Berry phase in a generalized nonlinear two-level system

被引:0
作者
刘继兵 [1 ]
李家华 [1 ]
宋佩君 [1 ]
李伟斌 [2 ]
机构
[1] Department of Physics, Huazhong University of Science and Technology
[2] Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences
基金
中国国家自然科学基金;
关键词
geometric phase; nonlinear system; atom–field coupling;
D O I
暂无
中图分类号
O431.2 [量子光学];
学科分类号
070207 ; 0803 ;
摘要
In this paper, we investigate the behaviour of the geometric phase of a more generalized nonlinear system composed of an effective two-level system interacting with a single-mode quantized cavity field. Both the field nonlinearity and the atom-field coupling nonlinearity are considered. We find that the geometric phase depends on whether the index k is an odd number or an even number in the resonant case. In addition, we also find that the geometric phase may be easily observed when the field nonlinearity is not considered. The fractional statistical phenomenon appears in this system if the strong nonlinear atom-field coupling is considered. We have also investigated the geometric phase of an effective two-level system interacting with a two-mode quantized cavity field.
引用
收藏
页码:38 / 42
页数:5
相关论文
共 50 条
  • [21] Geometric phase for a two-level atom immersed in a thermal bath in the global monopole space-time
    Wang, Zhi
    Cai, Huabing
    Xu, Chang
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2019, 34 (3-4):
  • [22] Observation of linear, nonlinear and singular behavior of the Pancharatnam-Berry phase
    van Dijk, T.
    Schouten, H. F.
    Ubachs, W.
    Visser, T. D.
    COMPLEX LIGHT AND OPTICAL FORCES IV, 2010, 7613
  • [23] Nonlinear Pancharatnam-Berry Phase Metasurfaces beyond the Dipole Approximation
    Gennaro, Sylvain D.
    Li, Yi
    Maier, Stefan A.
    Oulton, Rupert F.
    ACS PHOTONICS, 2019, 6 (09) : 2335 - 2341
  • [24] Quantum coherence, degree of mixedness and entropy squeezing of a two-level atom with the presence of the phase-noisy laser
    Berrada, K.
    Algarni, M.
    Abdel-Khalek, S.
    MODERN PHYSICS LETTERS A, 2025, 40 (02)
  • [25] Approximate solution of a nonlinear system of equations for two-phase media
    Skopetskii V.V.
    Marchenko O.A.
    Samoilenko T.A.
    Cybernetics and Systems Analysis, 2008, 44 (4) : 524 - 536
  • [26] GEOMETRIC UNIVERSAL SINGLE QUBIT OPERATION OF COLD TWO-LEVEL ATOMS
    Imai, Hiromitsu
    Morinaga, Atsuo
    PROCEEDINGS OF THE 9TH INTERNATIONAL SYMPOSIUM ON FOUNDATIONS OF QUANTUM MECHANICS IN THE LIGHT OF NEW TECHNOLOGY, 2009, : 262 - 265
  • [27] Nonadiabatic Coherent Evolution of Two-Level Systems under Spontaneous Decay
    Prado, F. O.
    Duzzioni, E. I.
    Moussa, M. H. Y.
    de Almeida, N. G.
    Villas-Boas, C. J.
    PHYSICAL REVIEW LETTERS, 2009, 102 (07)
  • [28] On the interaction between a time-dependent field and a two-level atom
    Abdel-Wahab, N. H.
    Salah, Ahmed
    MODERN PHYSICS LETTERS A, 2019, 34 (10)
  • [29] Measurement of the Pancharatnam-Berry phase in two-beam interference
    Hannonen, Antti
    Partanen, Henri
    Leinonen, Aleksi
    Heikkinen, Janne
    Hakala, Tommi K.
    Friberg, Ari T.
    Setala, Tero
    OPTICA, 2020, 7 (10): : 1435 - 1439
  • [30] Phases of the electronic two-level model under rotating wave approximation
    Thomaz, M. T.
    Aguiar Pinto, A. C.
    Moutinho, M.
    PHYSICA SCRIPTA, 2012, 86 (02)