ContinuousFabricationofTi3C2TxMXene-BasedBraidedCoaxialZinc-IonHybridSupercapacitorswithImprovedPerformance

被引:4
作者
Bao Shi [1 ]
La Li [2 ]
Aibing Chen [1 ]
TienChien Jen [3 ]
Xinying Liu [4 ]
Guozhen Shen [2 ]
机构
[1] Hebei University of Science and Technology
[2] State Key Laboratory for Superlattices and Microstructures Institute of Semiconductors Chinese Academy of Sciences&Center of Materials Science and Optoelectronic Engineering, University of Chinese Academy of Sciences
[3] Department of Mechanical Engineering Science, Kingsway Campus, University of Johannesburg
[4] Institute for Development of Energy for African Sustainability, University of South Africa
关键词
D O I
暂无
中图分类号
TM53 [电容器];
学科分类号
080801 ;
摘要
Zinc-ion hybrid fiber supercapacitors(FSCs) are promising energy storages for wearable electronics owing to their high energy density,good flexibility,and weavability.However,it is still a critical challenge to optimize the structure of the designed FSC to improve energy density and realize the continuous fabrication of super-long FSCs.Herein,we propose a braided coaxial zinc-ion hybrid FSC with several meters of Ti3C2Tx MXene cathode as core electrodes,and shell zinc fiber anode was braided on the surface of the Ti3C2Tx MXene fibers across the solid electrolytes.According to the simulated results using ANSYS Maxwell software,the braided structures revealed a higher capacitance compared to the spring-like structures.The resulting FSCs exhibited a high areal capacitance of 214 mF cm-2,the energy density of 42.8 μWh cm-2 at 5 mV s-1,and excellent cycling stability with 83.58% capacity retention after 5000 cycles.The coaxial FSC was tied several kinds of knots,proving a shape-controllable fiber energy storage.Furthermore,the knitted FSC showed superior stability and weavability,which can be woven into watch belts or embedded into textiles to power smart watches and LED arrays for a few days.
引用
收藏
页码:212 / 221
页数:10
相关论文
共 50 条
[41]   A high operating voltage micro-supercapacitor based on the interlamellar modulation type Ti3C2TxMXene [J].
Feng, Xin ;
Ning, Jing ;
Xia, Maoyang ;
Guo, Haibin ;
Zhou, Yu ;
Wang, Dong ;
Zhang, Jincheng ;
Hao, Yue .
NANOTECHNOLOGY, 2021, 32 (03)
[42]   Synergistic Enhancement of Electrocatalytic Nitrogen Reductionover Few-Layer MoSe2-Decorated Ti3C2TxMXene [J].
Qian, Xiu ;
Ma, Chaoqun ;
Shahid, Usman B. ;
Sun, Mengjie ;
Zhang, Xiaoli ;
Tian, Jian ;
Shao, Minhua .
ACS CATALYSIS, 2022, 12 (11) :6385-6393
[43]   Ti3C2TxMXene材料在电化学储能领域的应用进展 [J].
张佳琦 ;
李思琦 ;
罗磊 .
纺织导报, 2025, (04) :34-42
[44]   酚醛树脂/Ti3C2TxMXene导电复合材料制备与性能 [J].
洪雨宁 ;
张翼 ;
吴波 .
工程塑料应用, 2020, 48 (01) :13-17
[45]   Fast and all-weather cleanup of viscous crude-oil spills with Ti3C2TXMXene wrapped sponge [J].
Gong, Cheng ;
Lao, Junchao ;
Wang, Bingyv ;
Li, Xiaoyan ;
Li, Guojie ;
Gao, Jun ;
Wan, Yizao ;
Sun, Xiaohong ;
Guo, Ruisong ;
Luo, Jiayan .
JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (38) :20162-20167
[46]   Rh/Ti3C2TxMXene催化剂用于氨硼烷催化产氢 [J].
张庆萧 ;
付雪力 ;
赖慧荣 ;
姬培熠 ;
李辉 .
上海师范大学学报(自然科学版), 2021, 50 (05) :546-552
[47]   新型二维材料Ti3C2TxMXene制备及其气敏性能研究 [J].
韩丹 ;
刘志华 ;
刘琭琭 ;
韩晓美 ;
刘东明 ;
禚凯 ;
桑胜波 .
物理学报, 2022, 71 (01) :48-56
[48]   Ti3C2TxMXene负载玻璃纤维材料制备与电磁屏蔽性能 [J].
秦文峰 ;
符佳伟 ;
刘国春 ;
王新远 ;
李亚云 ;
范宇航 .
稀有金属材料与工程, 2020, 49 (11) :3896-3901
[49]   Seaweed-InspiredNH4V4O10-Ti3C2TxMXene/CarbonNanofibersforHigh-PerformanceAqueousZinc-IonBatteries [J].
Seulgi Kim ;
Seojin Woo ;
Segi Byun ;
Hyunki Kim ;
Han Seul Kim ;
Sang Mun Jeong ;
Dongju Lee .
Energy & Environmental Materials, 2025, 8 (03) :53-61
[50]   CNT@Ti3C2TxMXene Nanocomposite Catalysts as Anodes to Improve the Electricity Production Performance of Microbial Fuel Cells [J].
Yu, Meng ;
Wang, Wenzheng ;
Wu, Pengjie ;
Wen, Hongyu .
ELECTROCATALYSIS, 2025, 16 (01) :42-53