Investigation of Single-Wall MoS2 Monolayer Flakes Grown by Chemical Vapor Deposition

被引:0
|
作者
Nihan Kosku Perkgoz [1 ]
Mehmet Bay [1 ]
机构
[1] Department of Electrical and Electronics Engineering,Faculty of Engineering, Anadolu University
关键词
Monolayer; Chemical vapor deposition; Two-dimensional materials; Molybdenum disulfide(MoS2);
D O I
暂无
中图分类号
TQ136.12 [];
学科分类号
0817 ;
摘要
Recently, two-dimensional monolayer molybdenum disulfide(MoS), a transition metal dichalcogenide, has received considerable attention due to its direct bandgap, which does not exist in its bulk form, enabling applications in optoelectronics and also thanks to its enhanced catalytic activity which allows it to be used for energy harvesting. However,growth of controllable and high-quality monolayers is still a matter of research and the parameters determining growth mechanism are not completely clear. In this work, chemical vapor deposition is utilized to grow monolayer MoSflakes while deposition duration and temperature effect have been systematically varied to develop a better understanding of the MoSfilm formation and the influence of these parameters on the quality of the monolayer flakes. Different from previous studies, SEM results show that single-layer MoSflakes do not necessarily grow flat on the surface, but rather they can stay erect and inclined at different angles on the surface, indicating possible gas-phase reactions allowing for monolayer film formation. We have also revealed that process duration influences the amount of MoO/MoOwithin the film network. The homogeneity and the number of layers depend on the change in the desorption–adsorption of radicals together with sulfurization rates, and, inasmuch, a careful optimization of parameters is crucial. Therefore, distinct from the general trend of MoSmonolayer formation, our films are rough and heterogeneous with monolayer MoSnanowalls. Despite this roughness and the heterogeneity, we observe a strong photoluminescence located around 675 nm.
引用
收藏
页码:70 / 79
页数:10
相关论文
共 50 条
  • [1] Investigation of Single-Wall MoS2 Monolayer Flakes Grown by Chemical Vapor Deposition
    Nihan Kosku Perkgoz
    Mehmet Bay
    Nano-Micro Letters, 2016, 8 : 70 - 79
  • [2] Shape consistency of MoS2 flakes grown using chemical vapor deposition
    Wang, Lei
    Chen, Fei
    Ji, Xiaohong
    APPLIED PHYSICS EXPRESS, 2017, 10 (06)
  • [3] Transport Properties of Monolayer MoS2 Grown by Chemical Vapor Deposition
    Schmidt, Hennrik
    Wang, Shunfeng
    Chu, Leiqiang
    Toh, Minglin
    Kumar, Rajeev
    Zhao, Weijie
    Neto, A. H. Castro
    Martin, Jens
    Adam, Shaffique
    Oezyilmaz, Barbaros
    Eda, Goki
    NANO LETTERS, 2014, 14 (04) : 1909 - 1913
  • [4] Anisotropic Etching of Monolayer MoS2 Flakes for Zigzag Edges in Chemical Vapor Deposition
    Li, Qingxuan
    Luo, Qunyong
    Zhu, Yi
    Zheng, Bowen
    Zhou, Liqi
    Chen, Fei
    Wu, Di
    Peng, Ru-Wen
    Wang, Mu
    ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (48) : 66792 - 66801
  • [5] Investigation of growth-induced strain in monolayer MoS2 grown by chemical vapor deposition
    Luo, Siwei
    Cullen, Conor P.
    Guo, Gencai
    Zhong, Jianxin
    Duesberg, Georg S.
    APPLIED SURFACE SCIENCE, 2020, 508
  • [6] Capping technique for chemical vapor deposition of large and uniform MoS2 flakes
    Tsigkourakos, Menelaos
    Kainourgiaki, Maria
    Skotadis, Evangelos
    Giannakopoulos, Konstantinos P.
    Tsoukalas, Dimitris
    Raptis, Yannis S.
    THIN SOLID FILMS, 2021, 733
  • [7] Nucleation mechanism and morphology evolution of MoS2 flakes grown by chemical vapor deposition
    许贺菊
    米建松
    李云
    张彬
    丛日东
    傅广生
    于威
    Chinese Physics B, 2017, (12) : 595 - 599
  • [8] Nucleation mechanism and morphology evolution of MoS2 flakes grown by chemical vapor deposition
    Xu, He-Ju
    Mi, Jian-Song
    Li, Yun
    Zhang, Bin
    Cong, Ri-Dong
    Fu, Guang-Sheng
    Yu, Wei
    CHINESE PHYSICS B, 2017, 26 (12)
  • [9] Deriving MoS2 nanoribbons from their flakes by chemical vapor deposition
    Yang, Chunxia
    Wang, Bo
    Xie, Yunong
    Zheng, Yifan
    Jin, Chuanhong
    NANOTECHNOLOGY, 2019, 30 (25)
  • [10] Influence of defects on the valley polarization properties of monolayer MoS2 grown by chemical vapor deposition
    Mujeeb, Faiha
    Chakrabarti, Poulab
    Mahamiya, Vikram
    Shukla, Alok
    Dhar, Subhabrata
    PHYSICAL REVIEW B, 2023, 107 (11)