LOCAL WELL-POSEDNESS IN SOBOLEV SPACES WITH NEGATIVE INDICES FOR A SEVENTH ORDER DISPERSIVE EQUATION

被引:0
作者
王宏伟
机构
[1] DepartmentofMathematics,AnyangNormalUniversity
关键词
Cauchy problem; local well-posedness; Sobolev spaces; bilinear estimate;
D O I
暂无
中图分类号
O175 [微分方程、积分方程];
学科分类号
070104 ;
摘要
This paper is concerned with the Cauchy problem of a seventh order dispersive equation. We prove local well-posedness with initial data in Sobolev spaces Hs(R) for negative indices of s >-11/4.
引用
收藏
页码:199 / 208
页数:10
相关论文
共 12 条
[1]  
A NOTE ON "THE CAUCHY PROBLEM FOR COUPLED IMBQ EQUATIONS"[J]. 郭红霞,陈国旺. Acta Mathematica Scientia. 2013(02)
[2]  
Regularity criteria for weak solution to the 3D magnetohydrodynamic equations[J] . Wang Yuzhu,Wang Shubin,Wang Yinxia. Acta Mathematica Scientia . 2012 (3)
[3]  
Local well-posedness for the sixth-order Boussinesq equation[J] . Amin Esfahani,Luiz Gustavo Farah. Journal of Mathematical Analysis and Applications . 2011 (1)
[4]  
Local well-posedness for dispersion generalized Benjamin–Ono equations in Sobolev spaces[J] . Zihua Guo. Journal of Differential Equations . 2011 (3)
[5]   Sharp well-posedness for the Benjamin equation [J].
Chen, W. ;
Guo, Z. ;
Xiao, J. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (17) :6209-6230
[6]  
Well-posedness and ill-posedness for a fifth-order shallow water wave equation[J] . Wengu Chen,Zeping Liu. Nonlinear Analysis . 2009 (5)
[7]   Low regularity solutions of two fifth-order KDV type equations [J].
Wengu Chen ;
Junfeng Li ;
Changxing Miao ;
Jiahong Wu .
Journal d'Analyse Mathématique, 2009, 107
[8]   Local Solutions in Sobolev Spaces with Negative Indices for the Good Boussinesq Equation [J].
Farah, Luiz Gustavo .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2009, 34 (01) :52-73
[9]  
Existence of periodic traveling wave solution to the forced generalized nearly concentricKorteweg-de Vries equation[J] . Kenneth L. Jones,Xiaogui He,Yunkai Chen. International Journal of Mathematics and Mathematical Sciences . 2000 (6)
[10]   A bilinear estimate with applications to the KdV equation [J].
Kenig, CE ;
Ponce, G ;
Vega, L .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 9 (02) :573-603