Gradient Estimates for a Nonlinear Diffusion Equation on Complete Manifolds

被引:0
作者
Jiaxian WU [1 ]
Qihua RUAN [2 ]
Yihu YANG [3 ]
机构
[1] School of Mathematics and Statistics, Nanjing University of Information Science & Technology
[2] Department of Mathematics, Putian University
[3] Department of Mathematics, Shanghai Jiao Tong University
关键词
Gradient estimate; Bakry-Emery Ricci curvature; Nonlinear diffusion equation;
D O I
暂无
中图分类号
O186.12 [黎曼几何];
学科分类号
070104 ;
摘要
This paper deals with the gradient estimates of the Hamilton type for the positive solutions to the following nonlinear diffusion equation:u_t = △u +▽φ·▽u+a(x)uln u + b(x)u on a complete noncompact Riemannian manifold with a Bakry-Emery Ricci curvature bounded below by- K(K ≥ 0),where φ is a C2 function,a(x) and b(x) are C1 functions with certain conditions.
引用
收藏
页码:1011 / 1018
页数:8
相关论文
共 6 条
[1]   Gradient estimates for a nonlinear parabolic equation on Riemannian manifolds [J].
Yang, Yunyan .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 136 (11) :4095-4102
[2]  
Elliptic-type gradient estimate for Schrödinger equations on noncompact manifolds[J] . Qihua Ruan. Bulletin of the London Mathematical Society . 2007 (6)
[3]   Gradient estimates for a simple elliptic equation on complete non-compact Riemannian manifolds [J].
Ma, Li .
JOURNAL OF FUNCTIONAL ANALYSIS, 2006, 241 (01) :374-382
[4]   Liouville theorems for symmetric diffusion operators on complete Riemannian manifolds [J].
Li, XD .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2005, 84 (10) :1295-1361
[5]   A comparison theorem for an elliptic operator [J].
Qian, ZM .
POTENTIAL ANALYSIS, 1998, 8 (02) :137-142
[6]  
On the parabolic kernel of the Schr?dinger operator[J] . Peter Li,Shing Tung Yau. Acta Mathematica . 1986 (1)