<正> In this paper,we investigate the number,location and stability of limit cycles in a class of perturbedpolynomial systems with (2n+1) or (2n+2)-degree by constructing detection function and using qualitativeanalysis.We show that there are at most n limit cycles in the perturbed polynomial system,which is similar tothe result of Perko in [8] by using Melnikov method.For n=2,we establish the general conditions dependingon polynomial's coefficients for the bifurcation,location and stability of limit cycles.The bifurcation parametervalue of limit cycles in [5] is also improved by us.When n=3 the sufficient and necessary conditions for theappearance of 3 limit cycles are given.Two numerical examples for the location and stability of limit cycles areused to demonstrate our theoretical results.