ERROR REDUCTION,CONVERGENCE AND OPTIMALITY OF AN ADAPTIVE MIXED FINITE ELEMENT METHOD

被引:1
|
作者
Shaohong DU [1 ]
Xiaoping XIE [2 ,3 ]
机构
[1] School of Science,Chongqing Jiaotong University
[2] School of Mathematics,Sichuan University
[3] Yangtze Center of Mathematics,Sichuan University
关键词
AMFEM; convergence and optimality; discrete upper bound; quasi-orthogonality;
D O I
暂无
中图分类号
O241.82 [偏微分方程的数值解法];
学科分类号
070102 ;
摘要
This paper proves the error reduction property(saturation property),convergence and optimality of an adaptive mixed finite element method(AMFEM) for the Poisson equation.In each step of AMFEM,the local refinement is performed basing on simple either edge-oriented residuals or edge-oriented data oscillations,depending only on the marking strategy,under some restriction of refinement.The main tools used here are the strict discrete local efficiency property given by Carstensen and Hoppe(2006) and the quasi-orthogonality estimate proved by Chen,Hoist,and Xu (2009).Numerical experiments fully confirm the theoretical analysis.
引用
收藏
页码:195 / 208
页数:14
相关论文
共 50 条