Higher-order Optimality Conditions and Duality for Approximate Solutions in Non-convex Set-valued Optimization

被引:0
作者
Guo-lin YU
Tian-tian GONG
机构
[1] NorthMinzuUniversity
关键词
studniarski derivatives; optimality conditions; set-valued optimization problem; efficiency; duality;
D O I
暂无
中图分类号
O224 [最优化的数学理论];
学科分类号
070105 ; 1201 ;
摘要
This paper deals with higher-order optimality conditions and duality theory for approximate solutions in vector optimization involving non-convex set-valued maps. Firstly, under the assumption of near cone-subconvexlikeness for set-valued maps, the higher necessary and sufficient optimality conditions in terms of Studniarski derivatives are derived for local weak approximate minimizers of a set-valued optimization problem.Then, applications to Mond-Weir type dual problem are presented.
引用
收藏
页码:620 / 628
页数:9
相关论文
共 22 条
[1]   Higher-order optimality conditions in set-valued optimization using Studniarski derivatives and applications to duality [J].
Nguyen Le Hoang Anh .
POSITIVITY, 2014, 18 (03) :449-473
[2]   Higher-order optimality conditions for proper efficiency in nonsmooth vector optimization using radial sets and radial derivatives [J].
Nguyen Le Hoang Anh ;
Phan Quoc Khanh .
JOURNAL OF GLOBAL OPTIMIZATION, 2014, 58 (04) :693-709
[3]   \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon $$\end{document}-Optimality conditions of vector optimization problems with set-valued maps based on the algebraic interior in real linear spaces [J].
Zhi-Ang Zhou ;
Xin-Min Yang ;
Jian-Wen Peng .
Optimization Letters, 2014, 8 (3) :1047-1061
[4]   Lagrangian conditions for approximate solutions on nonconvex set-valued optimization problems [J].
Long, X. J. ;
Li, X. B. ;
Zeng, J. .
OPTIMIZATION LETTERS, 2013, 7 (08) :1847-1856
[5]   Higher-order optimality conditions in set-valued optimization using radial sets and radial derivatives [J].
Nguyen Le Hoang Anh ;
Phan Quoc Khanh .
JOURNAL OF GLOBAL OPTIMIZATION, 2013, 56 (02) :519-536
[6]   On approximate solutions in set-valued optimization problems [J].
Alonso-Duran, Maria ;
Rodriguez-Marin, Luis .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2012, 236 (17) :4421-4427
[7]   Existence and Optimality Conditions for Approximate Solutions to Vector Optimization Problems [J].
Gao, Y. ;
Hou, S. H. ;
Yang, X. M. .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2012, 152 (01) :97-120
[8]   Higher-order radial derivatives and optimality conditions in nonsmooth vector optimization [J].
Nguyen Le Hoang Anh ;
Phan Quoc Khanh ;
Le Thanh Tung .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (18) :7365-7379
[9]  
Variational sets: Calculus and applications to nonsmooth vector optimization[J] . Nguyen Le Hoang Anh,Phan Quoc Khanh,Le Thanh Tung.Nonlinear Analysis . 2010 (6)
[10]   Higher-order optimality conditions for weakly efficient solutions in nonconvex set-valued optimization [J].
Wang, Q. L. ;
Li, S. J. ;
Teo, K. L. .
OPTIMIZATION LETTERS, 2010, 4 (03) :425-437