FRACTAL PROPERTIES OF POLAR SETS OF RANDOM STRING PROCESSES

被引:0
作者
陈振龙 [1 ]
机构
[1] College of Statistics and Mathematics Zhejiang Gongshang University
关键词
random string process; hitting probability; polar set; Hausdorff dimension;
D O I
暂无
中图分类号
O211.6 [随机过程];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper studies fractal properties of polar sets for random string processes. We give upper and lower bounds of the hitting probabilities on compact sets and prove some sufficient conditions and necessary conditions for compact sets to be polar for the random string process. Moreover, we also determine the smallest Hausdorff dimensions of non-polar sets by constructing a Cantor-type set to connect its Hausdorff dimension and capacity.
引用
收藏
页码:969 / 992
页数:24
相关论文
共 22 条
  • [1] Hitting probabilities and the Hausdorff dimension of the inverse images of anisotropic Gaussian random fields. Biermé H,,Lacaux C,Xiao Y. Bulletin of the London Mathematical Society . 2009
  • [2] Algebraic sum of the image sets for a random string process. Chen Z. Osaka Journal of Mathematics . 2008
  • [3] Quelques propriétés géométriques de certains processus gaussiens. Testard F. C R Acad Sc Paris Série B . 1985
  • [4] Dimension asymétrique et ensembles doublement non polairs. Testard F. C R Acad Sc Paris, Série B . 1986
  • [5] Fractal properties of the random string process. Wu D,Xiao Y. IMS Lecture Notes-Monograph Series–High Dimensional Probability . 2006
  • [6] Two definitions of fractional dimension. Tricot C. Mathematical Proceedings of the Cambridge Philosophical Society . 1982
  • [7] Hitting probabilities and polar sets for fractional Brownian motion. Y. Xiao. Stoch. Stoch. Rep . 1999
  • [8] Fractal geometry: mathematical foundations and applications. Falconer KJ. . 1990
  • [9] Some Random Series of Functions. Kahane J P. . 1985
  • [10] Brownian Motion And Classical Potential Theory. Port S C,Stone C J. . 1978