Stationary Probability and First-Passage Time of Biased Random Walk

被引:0
作者
李井文 [1 ]
唐沈立 [1 ]
徐新平 [1 ]
机构
[1] School of Physical Science and Technology, Soochow University
基金
中国国家自然科学基金;
关键词
random walk; biased random walk; first-passage time; stationary probability;
D O I
暂无
中图分类号
O211 [概率论(几率论、或然率论)];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we consider the stationary probability and first-passage time of biased random walk on 1D chain, where at each step the walker moves to the left and right with probabilities p and q respectively(0 p, q 1,p + q = 1). We derive exact analytical results for the stationary probability and first-passage time as a function of p and q for the first time. Our results suggest that the first-passage time shows a double power-law F;, where the exponent γ = 2 for N < |p-q|;and γ = 1 for N > |p-q|;. Our study sheds useful insights into the biased random-walk process.
引用
收藏
页码:330 / 334
页数:5
相关论文
共 4 条
  • [1] Recurrence and Polya Number of General One-Dimensional Random Walks
    张晓琨
    万晶
    陆静菊
    徐新平
    [J]. CommunicationsinTheoreticalPhysics, 2011, 56 (08) : 293 - 296
  • [2] The random walk's guide to anomalous diffusion: a fractional dynamics approach[J] . Ralf Metzler,Joseph Klafter.Physics Reports . 2000 (1)
  • [3] Random walks and the effective resistance of networks[J] . Prasad Tetali.Journal of Theoretical Probability . 1991 (1)
  • [4] Aspects and Applications of the Random Walk .2 G.H.Weiss. New York . 1994