UNIFIED ANALYSIS OF TIME DOMAIN MIXED FINITE ELEMENT METHODS FOR MAXWELL'S EQUATIONS IN DISPERSIVE MEDIA

被引:0
作者
Jichun Li Department of Mathematical Sciences
机构
关键词
Maxwell’s equations; Dispersive media; Mixed finite element method;
D O I
暂无
中图分类号
O241.82 [偏微分方程的数值解法];
学科分类号
070102 ;
摘要
In this paper,we consider the time dependent Maxwell’s equations when dispersivemedia are involved.The Crank-Nicolson mixed finite element methods are developed forthree most popular dispersive medium models:the isotropic cold plasma,the one-poleDebye medium and the two-pole Lorentz medium.Optimal error estimates are provedfor all three models solved by the Raviart-Thomas-Nedelec spaces.Extensions to multiplepole dispersive media are presented also.
引用
收藏
页码:693 / 710
页数:18
相关论文
共 9 条
[1]  
OPTIMAL ERROR ESTIMATES FOR NEDELEC EDGE ELEMENTS FOR TIME-HARMONIC MAXWELL'S EQUATIONS[J]. Gabriel Wittum. Journal of Computational Mathematics. 2009(05)
[2]  
ERROR ESTIMATES FOR THE TIME DISCRETIZATION FOR NONLINEAR MAXWELL'S EQUATIONS[J]. Mavián Slodika,Ján Bua Jr.. Journal of Computational Mathematics. 2008(05)
[3]   Nodal auxiliary space preconditioning in H(curl) and H(div) spaces [J].
Hiptmair, Ralf ;
Xu, Jinchao .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2007, 45 (06) :2483-2509
[4]   Discontinuous Galerkin methods for dispersive and lossy Maxwell's equations and PML boundary conditions [J].
Lu, T ;
Zhang, PW ;
Cai, W .
JOURNAL OF COMPUTATIONAL PHYSICS, 2004, 200 (02) :549-580
[5]   Multigrid in H(div) and H(curl) [J].
Arnold, DN ;
Falk, RS ;
Winther, R .
NUMERISCHE MATHEMATIK, 2000, 85 (02) :197-217
[6]  
Fully discrete finite element approaches for time-dependent Maxwell's equations[J] . P. Ciarlet,Jr,Jun Zou. Numerische Mathematik . 1999 (2)
[7]  
Global superconvergence for Maxwell's equations[J] . Qun Lin,Ningning Yan. Mathematics of Computation . 1999 (229)
[8]   Vector potentials in three-dimensional non-smooth domains [J].
Amrouche, C ;
Bernardi, C ;
Dauge, M ;
Girault, V .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 1998, 21 (09) :823-864
[9]  
Mixed finite elements in ? 3[J] . J. C. Nedelec. Numerische Mathematik . 1980 (3)