Multiple Positive Solutions for a Nonlinear Elliptic Equation Involving Hardy–Sobolev–Maz'ya Term

被引:0
|
作者
Shuang Jie [1 ]
PENG Jing YANG [1 ]
机构
[1] School of Mathematics and Statistics, Central China Normal University
关键词
Hardy–Sobolev–Maz’ya inequality; Mountain Pass Lemma; positive solutions; subsolution and supersolution;
D O I
暂无
中图分类号
O175.25 [椭圆型方程];
学科分类号
070104 ;
摘要
In this paper, we study the existence and nonexistence of multiple positive solutions for the following problem involving Hardy–Sobolev–Maz’ya term:-Δu- λu/|y|2=|u|pt-1u/|y|t+ μf(x), x ∈Ω,where Ω is a bounded domain in RN(N ≥ 2), 0 ∈Ω, x =(y, z) ∈ Rk× RN-kand pt =N +2-2t N-2(0 ≤ t ≤2). For f(x) ∈ C1(Ω)\{0}, we show that there exists a constant μ*> 0 such that the problem possessesat least two positive solutions if μ∈(0, μ*) and at least one positive solution if μ = μ*. Furthermore,there are no positive solutions if μ∈(μ*, +∞).
引用
收藏
页码:893 / 912
页数:20
相关论文
共 50 条