MULTIPLE LIMIT CYCLES AND GLOBAL STABILITY IN PREDATOR-PREY MODEL

被引:3
作者
王育全
井竹君
陈启元
机构
关键词
Predater-pery system; global stability; existence of one or two limit cycles;
D O I
暂无
中图分类号
O175 [微分方程、积分方程];
学科分类号
070104 ;
摘要
1.IntroductionWeconsideranextensivesystemofthefamiliarLotka-Volterrasysteminwhichthepopulationshaveself-inhibit(i.e.,withtheadditionofdampingterm)thatcanbemodeledbytheequationswherexandyrepresentthepreydensityandpredatordensityrespectively.Thespecifi...
引用
收藏
页码:206 / 219
页数:14
相关论文
共 50 条
[31]   Global stability of a stage-structured predator-prey system [J].
Chen, Fengde ;
Wang, Haina ;
Lin, Yuhua ;
Chen, Wanlin .
APPLIED MATHEMATICS AND COMPUTATION, 2013, 223 :45-53
[32]   Global stability and travelling waves of a predator-prey model with diffusion and nonlocal maturation delay [J].
Zhang, Xiao ;
Xu, Rui .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2010, 15 (11) :3390-3401
[33]   The Study of Global Stability of a Diffusive Beddington-Deangelis and Tanner Predator-Prey Model [J].
Luo, Demou .
FILOMAT, 2019, 33 (12) :3937-3946
[34]   The Study of Global Stability of a Periodic Beddington-DeAngelis and Tanner Predator-Prey Model [J].
Luo, Demou .
RESULTS IN MATHEMATICS, 2019, 74 (03)
[35]   GLOBAL STABILITY AND CANARD EXPLOSIONS OF THE PREDATOR-PREY MODEL WITH THE SIGMOID FUNCTIONAL RESPONSE\ast [J].
Su, W. E., I ;
Zhang, X. I. A. N. G. .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2022, 82 (03) :976-1000
[36]   Persistence and global stability of a ratio-dependent predator-prey model with stage structure [J].
Xu, R ;
Chaplain, MAJ ;
Davidson, FA .
APPLIED MATHEMATICS AND COMPUTATION, 2004, 158 (03) :729-744
[37]   Uniqueness of limit cycles of the predator-prey system with Beddington-DeAngelis functional response [J].
Hwang, TW .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 290 (01) :113-122
[38]   GLOBAL STABILITY IN A MULTI-DIMENSIONAL PREDATOR-PREY SYSTEM WITH PREY-TAXIS [J].
Li, Dan .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2021, 41 (04) :1681-1705
[39]   Global dynamics of a predator-prey model with time delay and stage structure for the prey [J].
Xu, Rui .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2011, 12 (04) :2151-2162
[40]   GLOBAL ANALYSIS OF A HARVESTED PREDATOR-PREY MODEL INCORPORATING A CONSTANT PREY REFUGE [J].
Chen, Liujuan ;
Chen, Fengde .
INTERNATIONAL JOURNAL OF BIOMATHEMATICS, 2010, 3 (02) :205-223