A Bi-Hamiltonian Lattice System of Rational Type and Its Discrete Integrable Couplings

被引:0
作者
YANG HongXiang CAO WeiLi HOU YingKun ZHU XiangCaiDepartment of Information Science and TechnologyTaishan CollegeTaian China College of ScienceUniversity of Shanghai for Science and TechnologyShanghai China [1 ,2 ,1 ,1 ,271021 ,200093 ]
机构
关键词
isospectral eigenvalue problem; Lax pair; trace identity; bi-Hamiltonian structure; semi-direct sums; integrable coupling;
D O I
暂无
中图分类号
O175 [微分方程、积分方程];
学科分类号
070104 ;
摘要
<正> By considering a new discrete isospectral eigenvalue problem,a hierarchy of lattice soliton equations ofrational type are derived.It is shown that each equation in the resulting hierarchy is integrable in Liouville sense andpossessing bi-Hamiltonian structure.Two types of semi-direct sums of Lie algebras are proposed,by using of which apracticable way to construct discrete integrable couplings is introduced.As applications,two kinds of discrete integrablecouplings of the resulting system are worked out.
引用
收藏
页码:593 / 597
页数:5
相关论文
共 1 条
[1]  
Backlund transformations forexponential lattice .2 Wadati M,Toda M. J Phys Soc Jpn . 1975