LOCALIZATION THEOREM ON HAMILTONIAN GRAPHS

被引:0
|
作者
潘林强
张克民
周国飞
机构
关键词
Local condition; Hamilton cycle;
D O I
暂无
中图分类号
O411 [物理学的数学方法];
学科分类号
0701 ;
摘要
Let G be a 2-connected graph of order n(≥3). If I(u,v) ≥S(u,v) or max {d(u), d(v)} ≥n/2 for any two vertices u, v at distance two in an induced subgraph H1,3 or P3 of G, then G is hamiltonian. Here I(u, v) = |N(u) n N(v)|, S(n, v) denotes the number of edges of mtximum star containing u, v as an induced subgraph in G.
引用
收藏
页码:76 / 78
页数:3
相关论文
共 50 条
  • [21] HAMILTONIAN TOTAL GRAPHS
    FLEISCHNER, H
    HOBBS, AM
    MATHEMATISCHE NACHRICHTEN, 1975, 68 : 59 - 82
  • [22] Hamiltonian jump graphs
    Wu, BYDR
    Meng, JX
    DISCRETE MATHEMATICS, 2004, 289 (1-3) : 95 - 106
  • [23] Kneser graphs are Hamiltonian
    Merino, Arturo
    Muetze, Torsten
    Namrata
    ADVANCES IN MATHEMATICS, 2025, 468
  • [24] CRITICALLY HAMILTONIAN GRAPHS
    FOSTER, LL
    ACTA MATHEMATICA ACADEMIAE SCIENTIARUM HUNGARICAE, 1977, 29 (3-4): : 255 - 258
  • [25] Hamiltonian character graphs
    Ebrahimi, Mandi
    Iranmanesh, Ali
    Hosseinzadeh, Mohammad Ali
    JOURNAL OF ALGEBRA, 2015, 428 : 54 - 66
  • [26] HAMILTONIAN TOTAL GRAPHS
    FLEISCHN.H
    HOBBS, AM
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 20 (05): : A477 - A477
  • [27] GRAPHS WITH HAMILTONIAN SQUARES
    UNDERGROUND, P
    DISCRETE MATHEMATICS, 1978, 21 (03) : 323 - 323
  • [28] Hamiltonian Kneser Graphs
    Ya-Chen Chen
    Z. Füredi
    Combinatorica, 2002, 22 : 147 - 149
  • [29] The Hamiltonian Numbers in Graphs
    Chang, Ting-Pang
    Tong, Li-Da
    ARS COMBINATORIA, 2015, 123 : 151 - 158
  • [30] Hamiltonian Spectra of Graphs
    Tong, Li-Da
    Yang, Hao-Yu
    Zhu, Xuding
    GRAPHS AND COMBINATORICS, 2019, 35 (04) : 827 - 836