On Parseval super-frame wavelets

被引:0
|
作者
LI Zhong-yan1
机构
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Parseval frame wavelet; super frame; s-elementary Parseval super frame wavelet;
D O I
暂无
中图分类号
O174.2 [傅里叶分析(经典调和分析)];
学科分类号
070104 ;
摘要
Suppose that η,...,ηare measurable functions in L~2(R).We call the n-tuple(η,...,η) a Parseval super frame wavelet of length n if {2η(2~kt-l) ⊕···⊕2η(2~kt-l):k,l∈Z} is a Parseval frame for L~2(R)⊕n.In high dimensional case,there exists a similar notion of Parseval super frame wavelet with some expansive dilation matrix.In this paper,we will study the Parseval super frame wavelets of length n,and will focus on the path-connectedness of the set of all s-elementary Parseval super frame wavelets in one-dimensional and high dimensional cases.We will prove the corresponding path-connectedness theorems.
引用
收藏
页码:192 / 204
页数:13
相关论文
共 50 条
  • [1] On Parseval super-frame wavelets
    LI Zhongyan SHI XianliangCollege of Mathematics and Computer ScienceKey Laboratory of High Performance Computing and Stochastic Information ProcessingHPCSIPMinistry of Education of China Hunan Normal UniversityChangsha ChinaDepartment of Mathematics and PhysicsNorth China Electric Power UniversityBeijing China
    AppliedMathematics:AJournalofChineseUniversities(SeriesB), 2012, 27 (02) : 192 - 204
  • [2] On Parseval super-frame wavelets
    Li Zhong-yan
    Shi Xian-liang
    APPLIED MATHEMATICS-A JOURNAL OF CHINESE UNIVERSITIES SERIES B, 2012, 27 (02) : 192 - 204
  • [3] On Parseval super-frame wavelets
    Zhong-yan Li
    Xian-liang Shi
    Applied Mathematics-A Journal of Chinese Universities, 2012, 27 : 192 - 204
  • [4] Parseval frame scaling sets and MSF Parseval frame wavelets
    Liu, Zhanwei
    Hu, Guoen
    Lu, Zhibo
    CHAOS SOLITONS & FRACTALS, 2009, 41 (04) : 1966 - 1974
  • [5] The Characterization of Parseval Frame Wavelets
    Xin Xiang ZHANGGuo Chang WU College of InformationHenan University of Finance and EconomicsHenan PRChina
    数学研究与评论, 2011, 31 (02) : 242 - 250
  • [6] The Characterization of Parseval Frame Wavelets
    Xin Xiang ZHANG
    Journal of Mathematical Research with Applications, 2011, (02) : 242 - 250
  • [7] Semi-orthogonal frame wavelets and Parseval frame wavelets associated with GMRA
    Liu, Zhanwei
    Hu, Guoen
    Wu, Guochang
    Jiang, Bin
    CHAOS SOLITONS & FRACTALS, 2008, 38 (05) : 1449 - 1456
  • [8] Further results on the connectivity of Parseval frame wavelets
    Garrigos, G.
    Hernandez, E.
    Sikic, H.
    Soria, F.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 134 (11) : 3211 - 3221
  • [9] Parseval frame wavelets associated with A-FMRA
    Wu, Guochang
    Cheng, Zhengxing
    Li, Dengfeng
    Zhang, Fangjuan
    CHAOS SOLITONS & FRACTALS, 2008, 37 (04) : 1233 - 1243
  • [10] Projections and dyadic Parseval frame MRA wavelets
    Luthy, Peter M.
    Weiss, Guido L.
    Wilson, Edward N.
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2015, 39 (03) : 511 - 533