基于El-Nabulsi分数阶模型的广义Birkhoff系统Noether对称性研究

被引:9
作者
张毅 [1 ,2 ]
丁金凤 [3 ]
机构
[1] 苏州科技学院土木工程学院
[2] 南京理工大学理学院
[3] 苏州科技学院数理学院
关键词
力学系统; 对称性; 守恒量; El-Nabulsi分数阶模型; 广义Birkhoff系统; Noether定理; 无限小变换; 完整约束系统; 非完整约束系统;
D O I
10.14177/j.cnki.32-1397n.2014.03.002
中图分类号
O316 [分析力学(解析力学)];
学科分类号
摘要
为了进一步揭示力学系统的对称性与守恒量之间的内在关系,基于El-Nabulsi分数阶模型提出并研究了广义Birkhoff系统的Noether定理。首先,提出分数阶广义El-Nabulsi-PfaffBirkhoff原理,建立广义El-Nabulsi-Birkhoff方程。其次,基于El-Nabulsi-Pfaff作用量在无限小变换下的不变性,给出广义Birkhoff系统Noether对称性的定义和判据。最后,提出广义Birkhoff系统的Noether定理。该文研究结果可进一步应用于完整和非完整约束系统。
引用
收藏
页码:409 / 413
页数:5
相关论文
共 13 条
[1]  
Mechanics with fractional derivatives. Riewe F. Physical Review . 1997
[2]  
Nonconservative Lagrangian and Hamiltonian mechanics. Riewe. Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics . 1996
[3]  
Symmetries and conserved quantities for fractional action-like Pfaffian variational problems[J] . Yi Zhang,Yan Zhou. &nbspNonlinear Dynamics . 2013 (1)
[4]  
Fractional action-like variational problems in holonomic, non-holonomic and semi-holonomic constrained and dissipative dynamical systems[J] . Ahmad Rami EL-Nabulsi. &nbspChaos, Solitons and Fractals . 2008 (1)
[5]  
Formulation of Euler–Lagrange equations for fractional variational problems[J] . Om P. Agrawal. &nbspJournal of Mathematical Analysis and Applications . 2002 (1)
[6]  
Introduction to The Fractional Calculus of Variations. Malinowska, A. B,Torres, D. F. M. Journal of Women s Health . 2012
[7]  
A fractional approach to nonconservative Lagrangian dynamical systems. El-Nabulsi A R. Fizika A . 2005
[8]  
Non-conserva-tive Noether’’s theorem for fractional action-like variation-al problems with intrinsic and observer times. FREDERICO G S F,TORRES D F M. Int JEcol Econ Stat . 2007
[9]   Math [P]. 
COLEMAN KENNETH ROSS .
美国专利 :US2013020766A1 ,2013-01-24
[10]  
Fractional actionlike variational problems. Rami Ahmad El-Nabulsi,Delfim F.M. Torres. Journal of Mathematical Physics . 2008