Yetter–Drinfeld Modules over the Hopf–Ore Extension of the Group Algebra of Dihedral Group

被引:0
作者
Hong ZHU [1 ,2 ]
Hui Xiang CHEN [2 ]
机构
[1] Department of Information Science, School of Mathematical and Physical,Changzhou University
[2] School of Mathematical Science, Yangzhou University
关键词
Dihedral group; HopfOre extension; YetterDrinfeld module;
D O I
暂无
中图分类号
O153 [抽象代数(近世代数)];
学科分类号
070104 ;
摘要
Let k be an algebraically closed field of characteristic zero, and Dn be the dihedral group of order 2n, where n is a positive even integer. In this paper, we investigate Yetter-Drinfeld modules over the Hopf-Ore extension A(n, 0) of kDn . We describe the structures and properties of simple Yetter-Drinfeld modules over A(n, 0), and classify all simple Yetter-Drinfeld modules over A(n, 0).
引用
收藏
页码:487 / 502
页数:16
相关论文
共 6 条
[1]   二面体群上的Hopf Ore扩张的单模 [J].
王振 .
浙江师范大学学报(自然科学版), 2008, (04) :377-380
[2]   On oriented quantum algebras derived from representations of the quantum double of a finite-dimensional Hopf algebra [J].
Radford, DE .
JOURNAL OF ALGEBRA, 2003, 270 (02) :670-695
[3]  
Ore Extensions of Hopf Algebras[J] . A. N. Panov.Mathematical Notes . 2003 (3)
[4]   Constructing pointed Hopf algebras by ore extensions [J].
Beattie, M ;
Dascalescu, S ;
Grünenfelder, L .
JOURNAL OF ALGEBRA, 2000, 225 (02) :743-770
[5]   An isomorphism theorem for ore extension Hopf algebras [J].
Beattie, M .
COMMUNICATIONS IN ALGEBRA, 2000, 28 (02) :569-584
[6]  
Quantum groups and representations of monoidal categories[J] . David N. Yettera.Mathematical Proceedings of the Cambridge Philoso . 1990 (2)