Experimental study on the in-plane thermal conductivity of Au nanofilms

被引:0
|
作者
TAKAHASHI Koji
IKUTA Tatsuya
FUJII Motoo
机构
[1] Fukuoka 812-8581
[2] Graduate School of Engineering Kyushu University
[3] Institute for Materials Chemistry and Engineering
[4] Japan
[5] Kasuga 816-8580
基金
中国国家自然科学基金;
关键词
nanofilm; in-plane thermal conductivity; size effect; Wiedemann-Franz law;
D O I
暂无
中图分类号
O484.4 [薄膜的性质];
学科分类号
摘要
The in-plane thermal conductivity of Au nanofilms with thickness of 23 nm, which are fabricated by the electron beam-physical vapor deposition method and a suspension technology, is experimentally measured at 80-300 K by a one-dimensional steady-state electrical heating method. Strong size effects are found on the measured nanofilm thermal conductivity. The Au nanofilm in-plane thermal conductivity is much less than that of the bulk material. With the increasing temperature, the nanofilm thermal conductivity increases. This is opposite to the temperature dependence of the bulk property. The Lorenz number of the Au nanofilms is about three times larger than the bulk value and decreases with the increasing temperature, which indicates the invalidity of the Wiedemann-Franz law for metallic nanofilms.
引用
收藏
页码:212 / 216
页数:5
相关论文
共 50 条
  • [41] Four-probe measurements of the in-plane thermoelectric properties of nanofilms
    Mavrokefalos, Anastassios
    Pettes, Michael T.
    Zhou, Feng
    Shi, Li
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2007, 78 (03):
  • [42] Experimental study of electron conductivity of an aluminum contact in the presence of surface nanofilms
    Vikulov, A. G.
    Vikulov, D. G.
    Mesnyankin, S. Yu
    Fel'dman, A. Yu.
    HIGH TEMPERATURE, 2015, 53 (01) : 36 - 44
  • [43] Thermal conductivity of graphene grain boundaries along arbitrary in-plane directions: A comprehensive molecular dynamics study
    Fox, Andy
    Ray, Upamanyu
    Li, Teng
    JOURNAL OF APPLIED PHYSICS, 2019, 125 (01)
  • [44] Experimental study of electron conductivity of an aluminum contact in the presence of surface nanofilms
    A. G. Vikulov
    D. G. Vikulov
    S. Yu. Mesnyankin
    A. Yu. Fel’dman
    High Temperature, 2015, 53 : 36 - 44
  • [45] To the question of the thermal conductivity of metallic nanothreads and nanofilms
    Yurov, V. M.
    Ranova, G. A.
    Guchenko, S. A.
    Laurinas, V. Ch
    BULLETIN OF THE UNIVERSITY OF KARAGANDA-PHYSICS, 2018, 4 (92): : 57 - 66
  • [46] Effects of alloying on in-plane thermal conductivity and thermal boundary conductance in transition metal dichalcogenide monolayers
    Foss, Cameron J.
    Aksamija, Zlatan
    PHYSICAL REVIEW MATERIALS, 2020, 4 (12):
  • [47] Flexible BNOH@ polyurethane composites with high in-plane thermal conductivity for efficient thermal management
    Yang, Xudong
    Fang, Ye
    Cong, Hongmin
    Zhao, Zhengbai
    Yan, Chao
    Wang, Yang
    JOURNAL OF MATERIALS SCIENCE, 2024, 59 (19) : 8220 - 8234
  • [48] Experimental Study of In-Plane and Out-of-Plane Adhesions in Microelectromechanical Systems
    Friedrich, Thomas
    Raudzis, Carsten
    Mueller-Fiedler, Roland
    JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, 2009, 18 (06) : 1326 - 1334
  • [49] In-plane mechanical and thermal conductivity properties of a rectangular-hexagonal honeycomb structure
    Bezazi, A.
    Remillat, C.
    Innocenti, P.
    Scarpa, F.
    COMPOSITE STRUCTURES, 2008, 84 (03) : 248 - 255
  • [50] Simultaneous measurement of in-plane and interfacial thermal conductivity of isotopically labeled bilayer graphene
    Zhang, Yang
    Ren, Qiancheng
    Fang, Jiayuan
    Liu, Jinglan
    Wang, Suhao
    Song, Jizhou
    Zhao, Pei
    PHYSICAL REVIEW B, 2024, 109 (04)