Experimental study on the in-plane thermal conductivity of Au nanofilms

被引:0
|
作者
TAKAHASHI Koji
IKUTA Tatsuya
FUJII Motoo
机构
[1] Fukuoka 812-8581
[2] Graduate School of Engineering Kyushu University
[3] Institute for Materials Chemistry and Engineering
[4] Japan
[5] Kasuga 816-8580
基金
中国国家自然科学基金;
关键词
nanofilm; in-plane thermal conductivity; size effect; Wiedemann-Franz law;
D O I
暂无
中图分类号
O484.4 [薄膜的性质];
学科分类号
摘要
The in-plane thermal conductivity of Au nanofilms with thickness of 23 nm, which are fabricated by the electron beam-physical vapor deposition method and a suspension technology, is experimentally measured at 80-300 K by a one-dimensional steady-state electrical heating method. Strong size effects are found on the measured nanofilm thermal conductivity. The Au nanofilm in-plane thermal conductivity is much less than that of the bulk material. With the increasing temperature, the nanofilm thermal conductivity increases. This is opposite to the temperature dependence of the bulk property. The Lorenz number of the Au nanofilms is about three times larger than the bulk value and decreases with the increasing temperature, which indicates the invalidity of the Wiedemann-Franz law for metallic nanofilms.
引用
收藏
页码:212 / 216
页数:5
相关论文
共 50 条
  • [1] Experimental study on the in-plane thermal conductivity of Au nanofilms
    Cao Bingyang
    Zhang Qingguang
    Zhang Xing
    Takahashi, Koji
    Ikuta, Tatsuya
    Qiao Wenming
    Fujii, Motoo
    PROGRESS IN NATURAL SCIENCE-MATERIALS INTERNATIONAL, 2007, 17 (02) : 212 - 216
  • [2] Experimental study of thermal conductivity of aluminum nanofilms
    Jia, Lin
    Ma, Wei-Gang
    Zhang, Xing
    Kung Cheng Je Wu Li Hsueh Pao/Journal of Engineering Thermophysics, 2014, 35 (06): : 1136 - 1139
  • [3] Transient in-plane thermal transport in nanofilms with internal heating
    Hua, Yu-Chao
    Cao, Bing-Yang
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2016, 472 (2186):
  • [4] In-plane thermal conductivity of graphene nanomesh: A molecular dynamics study
    Yarifard, M.
    Davoodi, J.
    Rafii-Tabar, H.
    COMPUTATIONAL MATERIALS SCIENCE, 2016, 111 : 247 - 251
  • [5] Measurement of in-plane thermal conductivity in polymer films
    Wei, Qingshuo
    Uehara, Chinatsu
    Mukaida, Masakazu
    Kirihara, Kazuhiro
    Ishida, Takao
    AIP ADVANCES, 2016, 6 (04):
  • [6] Measure of in-plane thermal conductivity of composite structures
    Rijal, Manoj
    Sripragash, Letchuman
    Sundaresan, Mannur
    NONDESTRUCTIVE CHARACTERIZATION AND MONITORING OF ADVANCED MATERIALS, AEROSPACE, CIVIL INFRASTRUCTURE, AND TRANSPORTATION XIII, 2019, 10971
  • [7] Anisotropic in-plane thermal conductivity in multilayer silicene
    Zhou, Yang
    Guo, Zhi-Xin
    Chen, Shi-You
    Xiang, Hong-Jun
    Gong, Xin-Gao
    PHYSICS LETTERS A, 2018, 382 (22) : 1499 - 1503
  • [8] In-plane and cross-plane thermal conductivity of graphene: Applications in thermal interface materials
    Balandin, Alexander A.
    CARBON NANOTUBES, GRAPHENE, AND ASSOCIATED DEVICES IV, 2011, 8101
  • [9] In-plane thermal conductivity in thin carbon fiber composites
    Silva, Carlos
    Marotta, Egidio
    Schuller, Michael
    Peel, Larry
    O'Neill, Mark
    JOURNAL OF THERMOPHYSICS AND HEAT TRANSFER, 2007, 21 (03) : 460 - 467
  • [10] Dependence of the In-Plane Thermal Conductivity of Graphene on Grain Misorientation
    Lee, Dongmok
    Lee, Sanghoon
    An, Byeong-Seon
    Kim, Tae-Hoon
    Yang, Cheol-Woong
    Suk, Ji Won
    Baik, Seunghyun
    CHEMISTRY OF MATERIALS, 2017, 29 (24) : 10409 - 10417