A Unified Deep Learning Method for CSI Feedback in Massive MIMO Systems

被引:0
作者
GAO Zhengguang [1 ]
LI Lun [1 ]
WU Hao [1 ]
TU Xuezhen [2 ]
HAN Bingtao [1 ]
机构
[1] State Key Laboratory of Mobile Network and Mobile Multimedia Technology
[2] The College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics
关键词
deep learning; channel state information; element filling strategy;
D O I
暂无
中图分类号
TN929.5 [移动通信]; TP18 [人工智能理论];
学科分类号
080402 ; 080904 ; 0810 ; 081001 ; 081104 ; 0812 ; 0835 ; 1405 ;
摘要
A unified deep learning(DL) based algorithm is proposed for channel state information(CSI) compression in massive multipleinput multiple-output(MIMO) systems. More importantly, the element filling strategy is investigated to address the problem of model redesign-ing and retraining for different antenna typologies in practical systems. The results show that the proposed DL-based algorithm achieves better performance than the enhanced Type Ⅱ algorithm in Release 16 of 3GPP. The proposed element filling strategy enables one-time training of a unified model to compress and reconstruct different channel state matrices in a practical MIMO system.
引用
收藏
页码:110 / 115
页数:6
相关论文
共 16 条
[11]   Spatially Common Sparsity Based Adaptive Channel Estimation and Feedback for FDD Massive MIMO [J].
Gao, Zhen ;
Dai, Linglong ;
Wang, Zhaocheng ;
Chen, Sheng .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2015, 63 (23) :6169-6183
[12]  
MASSIVE MIMO: AN INTRODUCTION[J] . Marzetta,Thomas L..Bell Labs technical journal . 2015
[13]  
An Overview of Massive MIMO: Benefits and Challenges[J] . Lu Lu 0002,Geoffrey Ye Li,A. Lee Swindlehurst,Alexei E. Ashikhmin,Rui Zhang 0006.J. Sel. Topics Signal Processing . 2014 (5)
[14]   THE COST 2100 MIMO CHANNEL MODEL [J].
Liu, Lingfeng ;
Oestges, Claude ;
Poutanen, Juho ;
Haneda, Katsuyuki ;
Vainikainen, Pertti ;
Quitin, Francois ;
Tufvesson, Fredrik ;
De Doncker, Philippe .
IEEE WIRELESS COMMUNICATIONS, 2012, 19 (06) :92-99
[15]   An iterative thresholding algorithm for linear inverse problems with a sparsity constraint [J].
Daubechies, I ;
Defrise, M ;
De Mol, C .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2004, 57 (11) :1413-1457
[16]   Broadband MIMO-OFDM wireless communications [J].
Stüber, GL ;
Barry, JR ;
McLaughlin, SW ;
Li, Y ;
Ingram, MA ;
Pratt, TG .
PROCEEDINGS OF THE IEEE, 2004, 92 (02) :271-294