A Hierarchy of Integrable Lattice Soliton Equations and New Integrable Symplectic Map

被引:0
作者
SUN Ye-Peng CHEN Deng-Yuan Department of Mathematics
机构
基金
中国国家自然科学基金;
关键词
lattice soliton equation; discrete Hamiltonian structure; integrable symplectic map;
D O I
暂无
中图分类号
O175.2 [偏微分方程]; O411.1 [数学物理方法];
学科分类号
0701 ; 070104 ;
摘要
Starting from a discrete spectral problem,a hierarchy of integrable lattice soliton equations is derived.It isshown that the hierarchy is completely integrable in the Liouville sense and possesses discrete bi-Hamiltonian structure.A new integrable symplectic map and finite-dimensional integrable systems are given by nonlinearization method.Thebinary Bargmann constraint gives rise to a B(a|¨)cklund transformation for the resulting integrable lattice equations.Atlast,conservation laws of the hierarchy are presented.
引用
收藏
页码:405 / 410
页数:6
相关论文
共 1 条
  • [1] Binary non-linearization of Lax pairs of Kaup-Newell soliton hierarchy
    Ma, WX
    Ding, Q
    Zhang, WG
    Lu, BQ
    [J]. NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-BASIC TOPICS IN PHYSICS, 1996, 111 (09): : 1135 - 1149