p-LAPLACE EQUATIONS WITH MULTIPLE CRITICAL EXPONENTS AND SINGULAR CYLINDRICAL POTENTIAL

被引:0
作者
孙小妹 [1 ,2 ]
机构
[1] Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences
[2] College of Science, Huazhong Agricultural University
关键词
p-Laplace equation; cylindrical potential; critical exponents;
D O I
暂无
中图分类号
O175 [微分方程、积分方程];
学科分类号
070104 ;
摘要
In this paper,we deal with the following problem: {-△pu-λ|y|-p|u|p-2u = |y|-s|u|p*(s)-2u+|u|p*-2u in RN,y = 0,u ≥ 0,where u(x) = u(y,z) : Rm×RN m →R,N≥ 3,2 < m < N,1 < p < m,λ <((m-p)/p)p and 0 < s < p,p*(s) =(p(N-s))/(N-p),p*=pN/(N-p).By variational method,we prove the existence of a nontrivial weak solution when 0 < λ <((m-p)/p)p and the existence of a cylindrical weak solution when λ < 0.
引用
收藏
页码:1099 / 1112
页数:14
相关论文
共 22 条
[1]   Infinitely many solutions for p-Laplacian equation involving critical Sobolev growth [J].
Cao, Daomin ;
Peng, Shuangjie ;
Yan, Shusen .
JOURNAL OF FUNCTIONAL ANALYSIS, 2012, 262 (06) :2861-2902
[2]  
Results on entire solutions for a degenerate critical elliptic equation with anisotropic coefficients[J] . ShaoWei Chen,LiShan Lin.Science China Mathematics . 2010 (2)
[3]  
Global compactness results for quasilinear elliptic problems with combined critical Sobolev–Hardy terms[J] . Yuanyuan Li,Qianqiao Guo,Pengcheng Niu.Nonlinear Analysis . 2010 (4)
[4]  
Existence of a nontrivial weak solution to quasilinear elliptic equations with singular weights and multiple critical exponents[J] . Benjin Xuan,Ji Wang.Nonlinear Analysis . 2010 (9)
[5]  
Multiple stationary solutions of euler-poisson equations for non-isentropic gaseous stars[J] . Deng Yinbin,Xie Huazhao.Acta Mathematica Scientia . 2010 (6)
[6]  
On a Sobolev-type inequality related to the weighted p -Laplace operator[J] . Marita Gazzini,Roberta Musina.Journal of Mathematical Analysis and Applications . 2008 (1)
[7]  
Hardy–Sobolev–Maz'ya type equations in bounded domains[J] . M. Bhakta,K. Sandeep.Journal of Differential Equations . 2008 (1)
[8]  
On a p -Laplace equation with multiple critical nonlinearities[J] . Roberta Filippucci,Patrizia Pucci,Frédéric Robert.Journal de mathématiques pures et appliquées . 2008 (2)
[9]  
Ground state solutions of a critical problem involving cylindrical weights[J] . Roberta Musina.Nonlinear Analysis . 2007 (12)
[10]  
On existence of minimizers for the Hardy–Sobolev–Maz’ya inequality[J] . A. Tertikas,K. Tintarev.Annali di Matematica Pura ed Applicata . 2007 (4)