semiparametric regression model;
generalized ridge estimation;
penalized least squares estimation;
mean squares error;
D O I:
暂无
中图分类号:
O212.1 [一般数理统计];
学科分类号:
020208 ;
070103 ;
0714 ;
摘要:
We considered the following semiparametric regres-sion model yi = X iT β+ s ( t i ) + ei (i =1,2,,n). First,the general-ized ridge estimators of both parameters and non-parameters are given without a restrained design matrix. Second,the generalized ridge estimator will be compared with the penalized least squares estimator under a mean squares error,and some conditions in which the former excels the latter are given. Finally,the validity and feasibility of the method is illustrated by a simulation example.
机构:
Beijing Univ Technol, Coll Appl Sci, Beijing 100022, Peoples R China
E China Normal Univ, Sch Finance & Stat, Shanghai 200241, Peoples R ChinaBeijing Univ Technol, Coll Appl Sci, Beijing 100022, Peoples R China
Li, Gao Rong
Tian, Ping
论文数: 0引用数: 0
h-index: 0
机构:
Xuchang Univ, Dept Math, Xuchang 461000, Peoples R ChinaBeijing Univ Technol, Coll Appl Sci, Beijing 100022, Peoples R China
Tian, Ping
Xue, Liu Gen
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Univ Technol, Coll Appl Sci, Beijing 100022, Peoples R ChinaBeijing Univ Technol, Coll Appl Sci, Beijing 100022, Peoples R China