复域中扰动Fejer点上Hermite-Fejer插值逼近的稳定性

被引:2
作者
涂天亮 [1 ]
邓继恩 [2 ]
机构
[1] 华北水利水电学院数学与信息科学学院
[2] 河南理工大学数学与信息科学学院
关键词
扰动Fejer点; Hermite-Fejer插值; 稳定的收敛性和逼近阶;
D O I
暂无
中图分类号
O174.42 [插值论];
学科分类号
摘要
该文在Jordan区域上研究扰动Fejer点上Hermite-Fejer插值对.f∈A(D)的逼近阶与收敛性,完全解决了美国数学会1991年Transactions of the AMS中Chui和Shen提出的问题,并将其边界条件J2改进为J.
引用
收藏
页码:393 / 408
页数:16
相关论文
共 9 条
[1]  
Trigonometric series I. ZYGMUND A. Cambridge University Press . 1968
[2]  
Theory of Analytic Functions. Markushevech A I. GIT-TL . 1950
[3]  
Order of approximation by Lagronge interpolation polynomiais at nearly roots of unity. Shen X.C,Shuai B.P. J.of Math.(PRC) . 1991
[4]  
Introduction of Uniform Approximation to Functions by Polynomials. Dzyadyk V K. Nauk . 1977
[5]  
Jackson type theorems on complex curves[J]. TU TianLiang Deptartment of Mathematics and Informatics, North China Institute of Water Conservancy and Hydroelectric Power, Zhengzhou 450011, China. Science in China(Series A:Mathematics). 2009(03)
[6]  
The Simultaneous Approximation Order by Hermite Interpolation in a Smooth Domain[J] . Tian Liang Tu. &nbspActa Mathematica Sinica, English Series . 2002 (4)
[7]  
On Hermite-Fejer interpolation in a Jordan domain. CHUI C R, SHEN X C. Transactions of the American Mathematical Society . 1991
[8]  
Problems and Theorems in Analysis. Polya G,Szeg (o|¨) G. GIT-TL . 1956
[9]  
Theory of Interpolation and Approximation of Functions. V. L. Goncharov. . 1954