OPTIMAL APPROXIMATE SOLUTION OF THE MATRIX EQUATION AXB = C OVER SYMMETRIC MATRICES

被引:0
作者
Anping Liao and Yuan Lei College of Mathematics and Econometrics Hunan University Changsha China [410082 ]
机构
关键词
Least-squares solution; Optimal approximate solution; Generalized singular value decomposition; Canonical correlation decomposition;
D O I
暂无
中图分类号
O241 [数值分析];
学科分类号
070102 ;
摘要
<正> Let SE denote the least-squares symmetric solution set of the matrix equation AXB=C, where A, B and C are given matrices of suitable size. To find the optimal approximate solution in the set SE to a given matrix, we give a new feasible method based on the projection theorem, the generalized SVD and the canonical correction decomposition.
引用
收藏
页码:543 / 552
页数:10
相关论文
共 5 条
[1]   用矩阵分解求解线性矩阵方程的最优解 [J].
袁永新 .
计算数学, 2002, (02) :165-176
[2]   New estimates for singular values of a matrix [J].
Pang, MX .
JOURNAL OF COMPUTATIONAL MATHEMATICS, 2005, 23 (02) :199-204
[3]   On solutions of matrix equation AX AT + BY BT=C [J].
Deng, YB ;
Hu, XY .
JOURNAL OF COMPUTATIONAL MATHEMATICS, 2005, 23 (01) :17-26
[4]  
LEAST-SQUARES SOLUTION OF AX B = D OVER SYMMETRIC POSITIVE SEMIDEFINITE MATRICES X[J] . Journal of Computational Mathematics . 2003 (2)
[5]   TOWARDS A GENERALIZED SINGULAR VALUE DECOMPOSITION [J].
PAIGE, CC ;
SAUNDERS, MA .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1981, 18 (03) :398-405