Hamiltonian Systems and Darboux Transformation Associated with a 3×3 Matrix Spectral Problem

被引:1
作者
LUO Lin(1
机构
基金
中国国家自然科学基金;
关键词
nonlinear equations; Hamiltonian system; symmetry constraint; Darboux transformation;
D O I
暂无
中图分类号
O175 [微分方程、积分方程]; O151.21 [矩阵论];
学科分类号
070104 ;
摘要
Starting from a 3×3 matrix spectral problem,we derive a hierarchy of nonlinear equations.It is shownthat the hierarchy possesses bi-Hamiltonian structure.Under the symmetry constraints between the potentials and theeigenfunctions,Lax pair and adjoint Lax pairs including partial part and temporal part are nonlinearied into two finite-dimensional Hamiltonian systems(FDHS)in Liouville sense.Moreover,an explicit N-fold Darboux transformation forCDNS equation is constructed with the help of a gauge transformation of the spectral problem.
引用
收藏
页码:205 / 210
页数:6
相关论文
共 21 条
  • [1] Darboux transformations and solitons. Matveev VB,Salle MA. . 1991
  • [2] F. Magri. Journal of Mathematical Physics . 1978
  • [3] Samiltonian operators and infinite-dimensional Lie algebras. Gel’fand,I. M.,Dorfman,I. Ya. Functional Analysis and Its Applications . 1981
  • [4] G.Z.Tu. Journal of Mathematical Physics . 1989
  • [5] C.W.Cao. Journal of Mathematical Physics . 1999
  • [6] Darboux Transformation in Soliton Theory and its Geometric Application. C.H. Gu. . 1999
  • [7] Y.Nutku. Journal of Mathematical Physics . 1987
  • [8] G.Neuebauer,D.Kramer. Journal of Physics A Mathematical and General . 1983
  • [9] W.X.Ma,W.Sttampp. Physics Letters A . 1994
  • [10] W.X.Ma. Journal of the Physical Society of Japan . 1995