A class of singular integrals on the n-complex unit sphere

被引:0
|
作者
Michael Cowling
钱涛
机构
[1] University of New South Walse NSW 2052
[2] Australia
[3] Department of Pure Mathematics
关键词
singular integral; Fourier multiplier; the unit sphere in Cn; functional calculus;
D O I
暂无
中图分类号
O177 [泛函分析];
学科分类号
070104 ;
摘要
The operators on the n-complex unit sphere under study have three forms: the singular integrals with holomorphic kernels, the bounded and holomorphic Fourier multipliers, and the Cauchy-Dunford bounded and holomorphic functional calculus of the radial Dirac operator. The equivalence between the three forms and the strong-type (p, p), 1<p<∞, and weak-type (1,1)-boundedness of the operators is proved. The results generalise the work of L. K. Hua, A. Korányli and S. Vagi, W. Rudin and S. Gong on the Cauchy-Szeg(?) kernel and the Cauchy singular integral operator.
引用
收藏
页码:1233 / 1245
页数:13
相关论文
共 50 条