Covalent triazine-based frameworks confining cobalt single atoms for photocatalytic CO2 reduction and hydrogen production

被引:4
|
作者
Guocheng Huang [1 ]
Guiyun Lin [1 ]
Qing Niu [1 ]
Jinhong Bi [1 ,2 ]
Ling Wu [2 ]
机构
[1] Department of Environmental Science and Engineering, Fuzhou University
[2] State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University
基金
中国国家自然科学基金;
关键词
D O I
暂无
中图分类号
O643.36 [催化剂]; O644.1 [光化学];
学科分类号
摘要
Single-atom catalysts(SACs) have emerged as an advanced frontier in heterogeneous catalysis due to their potential to maximize the atomic efficiency. Herein, covalent triazine-based frameworks(CTFs) confining cobalt single atoms(Co-SA/CTF) photocatalysts have been synthesized and used for efficient COreduction and hydrogen production under visible light irradiation. The resulted Co-SA/CTF demonstrate excellent photocatalytic activity, with the CO and H 12evolution rates reaching 1665.74 μmol gh-and1293.18 μmol gh, respectively, far surpassing those of Co nanoparticles anchored CTF and pure CTF.A variety of instrumental analyses collectively indicated that Co single atoms sites served as the reaction center for activating the adsorbed COmolecules, which significantly improved the COreduction performance. Additionally, the introduction of Co single atoms could accelerate the separation/transfer of photogenerated charge carriers, thus boosting the photocatalytic performance. This study envisions a novel strategy for designing efficient photocatalysts for energy conversion and showcases the application of CTFs as attractive support for confining metal single atoms.
引用
收藏
页码:41 / 49
页数:9
相关论文
共 50 条
  • [21] Engineering single-atom catalysts on triazine-based covalent organic frameworks for enhanced photocatalytic performance in N2 reduction
    Chen, Meiyan
    Li, Qingyu
    Xu, Xinyue
    Liu, Diwen
    Ma, Zuju
    Li, Yanxia
    Zhang, Yanjie
    Li, Dejing
    Chen, Qiang
    Sa, Rongjian
    CHEMICAL ENGINEERING JOURNAL, 2024, 494
  • [22] Covalent Triazine-Based Frameworks with Ultramicropores and High Nitrogen Contents for Highly Selective CO2 Capture
    Wang, Keke
    Huang, Hongliang
    Liu, Dahuan
    Wang, Chang
    Li, Jinping
    Zhong, Chongli
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2016, 50 (09) : 4869 - 4876
  • [23] Enhanced photocatalytic CO2 reduction of covalent triazine-based photocatalyst: Mechanistic insights from time-resolved spectroscopy
    Yadav, Rajesh K.
    Choi, Seung Yeon
    Singh, Satyam
    Kim, Tae Wu
    BULLETIN OF THE KOREAN CHEMICAL SOCIETY, 2025,
  • [24] MoS2 Quantum Dots-Modified Covalent Triazine-Based Frameworks for Enhanced Photocatalytic Hydrogen Evolution
    Jiang, Qianqian
    Sun, Long
    Bi, Jinhong
    Liang, Shijing
    Li, Liuyi
    Yu, Yan
    Wu, Ling
    CHEMSUSCHEM, 2018, 11 (06) : 1108 - 1113
  • [25] A triazine-based covalent organic polymer for efficient CO2 adsorption
    Gomes, Ruth
    Bhanja, Piyali
    Bhaumik, Asim
    CHEMICAL COMMUNICATIONS, 2015, 51 (49) : 10050 - 10053
  • [26] Covalent triazine-based frameworks with cobalt-loading for visible light-driven photocatalytic water oxidation
    Chen, Hongmei
    Gardner, Adrian M.
    Lin, Guoan
    Zhao, Wei
    Bahri, Mounib
    Browning, Nigel D.
    Sprick, Reiner Sebastian
    Li, Xiaobo
    Xu, Xiaoxiang
    Cooper, Andrew I.
    CATALYSIS SCIENCE & TECHNOLOGY, 2022, 12 (17) : 5442 - 5452
  • [27] A facile in situ growth of CdS quantum dots on covalent triazine-based frameworks for photocatalytic H2 production
    Huang, Huimin
    Xu, Bin
    Tan, Zunkun
    Jiang, Qianqian
    Fang, Shengqiong
    Li, Liuyi
    Bi, Jinhong
    Wu, Ling
    JOURNAL OF ALLOYS AND COMPOUNDS, 2020, 833
  • [28] Molecular Heterostructures of Covalent Triazine Frameworks for Enhanced Photocatalytic Hydrogen Production
    Huang, Wei
    He, Qing
    Hu, Yongpan
    Li, Yanguang
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2019, 58 (26) : 8676 - 8680
  • [29] A mixed-linker approach towards improving covalent triazine-based frameworks for CO2 capture and separation
    Dey, Subarna
    Bhunia, Asamanjoy
    Boldog, Ishtvan
    Janiak, Christoph
    MICROPOROUS AND MESOPOROUS MATERIALS, 2017, 241 : 303 - 315
  • [30] A Covalent Triazine-Based Framework Consisting of Donor-Acceptor Dyads for Visible-Light-Driven Photocatalytic CO2 Reduction
    Zhong, Hong
    Hong, Zixiao
    Yang, Can
    Li, Liuyi
    Xu, Yangsen
    Wang, Xinchen
    Wang, Ruihu
    CHEMSUSCHEM, 2019, 12 (19) : 4493 - 4499