On Total Colorings of Some Special 1-planar Graphs

被引:0
作者
Lin SUN [1 ,2 ]
Jian-liang WU [1 ]
Hua CAI [1 ,2 ]
机构
[1] Department of Mathematics, Changji University
[2] School of Mathematics, Shandong University
关键词
1-planar graph; total coloring; discharging method; girth; r-minimal graph;
D O I
暂无
中图分类号
O157.5 [图论];
学科分类号
070104 ;
摘要
A graph is 1-planar if it can be drawn on the plane so that each edge is crossed by at most one other edge. In this paper, we verify the total coloring conjecture for every 1-planar graph G if either ?(G) ≥ 9 and g(G) ≥ 4, or ?(G) ≥ 7 and g(G) ≥ 5, where ?(G) is the maximum degree of G and g(G) is the girth of G.
引用
收藏
页码:607 / 618
页数:12
相关论文
共 10 条
  • [1] A Totally(Δ+1)-colorable 1-planar Graph with Girth at Least Five
    Lin SUN
    Jian Liang WU
    Hua CAI
    [J]. Acta Mathematica Sinica, 2016, 32 (11) : 1337 - 1349
  • [2] Total coloring of embedded graphs with maximum degree at least seven [J] . Huijuan Wang,Bin Liu,Jianliang Wu,Guizhen Liu.&nbsp&nbspTheoretical Computer Science . 2014
  • [3] List edge and list total coloring of 1-planar graphs
    Zhang, Xin
    Wu, Jianliang
    Liu, Guizhen
    [J]. FRONTIERS OF MATHEMATICS IN CHINA, 2012, 7 (05) : 1005 - 1018
  • [4] On edge colorings of 1-planar graphs [J] . Xin Zhang,Jian-Liang Wu.&nbsp&nbspInformation Processing Letters . 2010 (3)
  • [5] On the total coloring of planar graphs. [J] . O.V. Borodin.&nbsp&nbspJournal für die reine und angewandte Mathematik (Crelles Journal) . 2009 (394)
  • [6] Total colorings of planar graphs without adjacent triangles [J] . Xiang-Yong Sun,Jian-Liang Wu,Yu-Wen Wu,Jian-Feng Hou.&nbsp&nbspDiscrete Mathematics . 2007 (1)
  • [7] The total chromatic number of any multigraph with maximum degree five is at most seven [J] . A.V. Kostochka.&nbsp&nbspDiscrete Mathematics . 1996 (1)
  • [8] On the total coloring of certain graphs [J] . M. Rosenfeld.&nbsp&nbspIsrael Journal of Mathematics . 1971 (3)
  • [9] Ein Sechsfarbenproblem auf der Kugel [J] . Gerhard Ringel.&nbsp&nbsp . 1965 (1)
  • [10] Some unsolved problems in graph theory .2 Vizing,V. G. Uspekhi Mat Nauk . 1968