Convergence Theorems for λ-strict Pseudo-contractions in q-uniformly Smooth Banach Spaces

被引:0
作者
Hai Yun ZHOU College of Mathematics and Information Science Hebei Normal University Shijiazhuang P R China and Department of Mathematics Shijiazhuang Mechanical Engineering College Shijiazhuang P R China [50016 ,50003 ]
机构
关键词
convergence theorem; λ-strict pseudo-contraction; the normal Mann iteration; the Ishikawa-like iteration; q-uniformly smooth Banach spaces;
D O I
暂无
中图分类号
O177.2 [巴拿赫空间及其线性算子理论];
学科分类号
070104 ;
摘要
<正> In this paper, we continue to discuss the properties of iterates generated by a strict pseudo-contraction or a finite family of strict pseudo-contractions in a real q-uniformly smooth Banach space.The results presented in this paper are interesting extensions and improvements upon those knownones of Marino and Xu [Marino, G., Xu, H. K.: Weak and strong convergence theorems for strictpseudo-contractions in Hilbert spaces. J. Math. Anal. Appl., 324, 336-349 (2007)]. In order to geta strong convergence theorem, we modify the normal Mann's iterative algorithm by using a suitableconvex combination of a fixed vector and a sequence in C. This result extends a recent result of Kimand Xu [Kim, T. H., Xu, H. K.: Strong convergence of modified Mann iterations. Nonl. Anal., 61, 51-60 (2005)] both from nonexpansive mappings to λ-strict pseudo-contractions and from Hilbert spacesto q-uniformly smooth Banach spaces.
引用
收藏
页码:743 / 758
页数:16
相关论文
共 9 条
[1]   Strong convergence theorems for nonexpansive mappings and nonexpansive semigroups [J].
Nakajo, K ;
Takahashi, W .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2003, 279 (02) :372-379
[2]  
Non–expansive Mappings and Iterative Methods in Uniformly Convex Banach Spaces[J] . Hai Yun Zhou.Acta Mathematica Sinica, English Series . 2004 (5)
[3]   An example on the Mann iteration method for Lipschitz pseudocontractions [J].
Chidume, CE ;
Mutangadura, SA .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 129 (08) :2359-2363
[4]   ISHIKAWA AND MANN ITERATIVE PROCESS WITH ERRORS FOR NONLINEAR STRONGLY ACCRETIVE MAPPINGS IN BANACH-SPACES [J].
LIU, LS .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1995, 194 (01) :114-125
[5]   FIXED-POINT ITERATION PROCESSES FOR ASYMPTOTICALLY NONEXPANSIVE-MAPPINGS [J].
TAN, KK ;
XU, HK .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1994, 122 (03) :733-739
[6]   APPROXIMATION OF FIXED-POINTS OF NONEXPANSIVE-MAPPINGS [J].
WITTMANN, R .
ARCHIV DER MATHEMATIK, 1992, 58 (05) :486-491
[7]   ZEROS OF ACCRETIVE OPERATORS [J].
DEIMLING, K .
MANUSCRIPTA MATHEMATICA, 1974, 13 (04) :365-374
[8]  
Fixed point iterations using infinite matrices[J] . B. E. Rhoades.tran . 1974