A Message Entropy Method of Learning from Examples

被引:0
|
作者
刘占生
武新华
夏松波
机构
关键词
Machine learning; decision tree; extension matrix; message entropy; fault diagnosis;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Extension matrix(EM)and ID3 are two main algorithms with wide applicationin the field of machine learning,but analysis shows EM may Cause false diagnosis and ID3may cause fail diagnosis.This paper presents a new combination of these two methods toachieve a new method called entropy extension matrix(EEM)and a new concept ofgeneralization association ability(GAA).Results show that this algorithm has propertiesbetter than those of EM and ID3.
引用
收藏
页码:10 / 13
页数:4
相关论文
共 50 条
  • [21] A New Model of Computation for Learning Vision Modules from Examples
    Rhys A. Newman
    Journal of Mathematical Imaging and Vision, 1999, 11 : 45 - 63
  • [22] A new model of computation for learning vision modules from examples
    Newman, RA
    JOURNAL OF MATHEMATICAL IMAGING AND VISION, 1999, 11 (01) : 45 - 63
  • [23] Learning rules from incomplete training examples by rough sets
    Hong, TP
    Tseng, LH
    Wang, SL
    EXPERT SYSTEMS WITH APPLICATIONS, 2002, 22 (04) : 285 - 293
  • [24] Inductive learning from preclassified training examples: An empirical study
    Li, WQ
    Aiken, M
    IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART C-APPLICATIONS AND REVIEWS, 1998, 28 (02): : 288 - 295
  • [25] A Fault Diagnosis Method for Rotating Machinery by Multimode Feature Entropy and Mutual Cooperation Broad Learning System
    Li, Chunlin
    Hu, Qintai
    Zhao, Shuping
    Wu, Jigang
    Xiong, Jianbin
    Zhang, Qinghua
    IEEE SENSORS JOURNAL, 2024, 24 (03) : 3084 - 3097
  • [26] A NEW DATA STRUCTURE HC-EXPRESSION FOR LEARNING FROM EXAMPLES
    CHITOOR, SS
    MURTY, MN
    BHANDARU, MK
    PATTERN RECOGNITION, 1991, 24 (01) : 19 - 29
  • [27] A defeasible reasoning model of inductive concept learning from examples and communication
    Ontanon, Santiago
    Dellunde, Pilar
    Godo, Lluis
    Plaza, Enric
    ARTIFICIAL INTELLIGENCE, 2012, 193 : 129 - 148
  • [28] Learning MAX-SAT from contextual examples for combinatorial optimisation
    Kumar, Mohit
    Kolb, Samuel
    Teso, Stefano
    De Raedt, Luc
    ARTIFICIAL INTELLIGENCE, 2023, 314
  • [29] Detecting DDoS Attacks in SDN using a Hybrid Method with Entropy and Machine Learning
    Santos-Neto, Marcos J.
    Bordim, Jacir L.
    Alchieri, Eduardo A. P.
    Ishikawa, Edison
    Dourado, Leonardo S.
    2022 TENTH INTERNATIONAL SYMPOSIUM ON COMPUTING AND NETWORKING WORKSHOPS, CANDARW, 2022, : 248 - 254
  • [30] Improving detection of apneic events by learning from examples and treatment of missing data
    Elena, Hernandez-Pereira
    Diego, Alvarez-Estevez
    Vicente, Moret-Bonillo
    INNOVATION IN MEDICINE AND HEALTHCARE 2014, 2014, 207 : 213 - 224