Temporal-Spatial Structure of Intraplate Uplift in the Qinghai-Tibet Plateau

被引:0
|
作者
LI Dewei Faculty of Earth Sciences and Center for Tibetan Plateau Studies
机构
基金
美国国家科学基金会;
关键词
intraplate orogeny; isostatic mountain building; lower crust flow; basin-orogen coupling; tectonic evolution; Qinghai-Tibet Plateau;
D O I
暂无
中图分类号
P542 [构造运动];
学科分类号
070904 ;
摘要
The intraplate uplift of the Qinghai-Tibet Plateau took place on the basis of breakup and assembly of the Precambrian supercontinent, and southward ocean-continent transition of the Proto-, Paleo-, Meso-and Neo-Tethys during the Caledonian, Indosinian, Yanshanian and Early Himalayan movements. The intraplate tectonic evolution of the Qinghai-Tibet Plateau underwent the early stage of intraplate orogeny characterized by migrational tectonic uplift, horizontal movement and geological processes during 180-7 Ma, and the late stage of isostatic mountain building characterized by pulsative rapid uplift, vertical movement and geographical processes since 3.6 Ma. The spatial-temporal evolution of the intraplate orogeny within the Qinghai-Tibet Plateau shows a regular transition from the northern part through the central part to the southern part during 180-120 Ma, 65-35 Ma, and 25-7 Ma respectively, with extensive intraplate faulting, folding, block movement, magmatism and metallogenesis. Simultaneous intraplate orogeny and basin formation resulted from crustal rheological stratification and basin-orogen coupling that was induced by lateral viscous flow in the lower crust. This continental dynamic process was controlled by lateral flow of hot and soft materials within the lower crust because of slab dehydration and melted mantle upwelling above the subducted plates during the southward Tethyan ocean-continent transition processes or asthenosphere diapirism. Intraplate orogeny and basin formation were irrelevant to plate collision. The Qinghai-Tibet Plateau as a whole was actually formed by the isostatic mountain building processes since 3.6 Ma that were characterized by crust-scale vertical movement, and integral rapid uplift of the plateau, accompanied by isostatic subsidence of peripheral basins and depressions, and great changes in topography and environment. A series of pulsative mountain building events, associated with gravity equilibrium and isostatic adjustment of crustal materials, at 3.6 Ma, 2.5 Ma, 1.8-1.2 Ma, 0.9-0.8 Ma and 0.15-0.12 Ma led to the formation of a composite orogenic belt by unifying the originally relatively independent Himalayas, Gangdisê, Tanghla, Longmenshan, Kunlun, Altyn Tagh, and Qilian mountains, and the formation of the complete Qinghai-Tibet Plateau with a unified mountain root after Miocene uplift of the plateau as a whole.
引用
收藏
页码:105 / 134
页数:30
相关论文
共 50 条
  • [31] Spatial-Temporal Changes and Driving Mechanisms of Ecological Environmental Quality in the Qinghai-Tibet Plateau, China
    Shen, Zhan
    Gong, Jian
    LAND, 2024, 13 (12)
  • [32] Characteristics of Spatial and Temporal Variations of Monthly Mean Surface Air Temperature over Qinghai-Tibet Plateau
    ZHANG Qianggong1
    2.Graduate University of Chinese Academy of Sciences
    3.Key Laboratory of Cryosphere and Environment
    4.National Climate Center
    Chinese Geographical Science, 2006, (04) : 351 - 358
  • [33] Characteristics of spatial and temporal variations of monthly mean surface air temperature over Qinghai-Tibet Plateau
    Qianggong Zhang
    Shichang Kang
    Yuping Yan
    Chinese Geographical Science, 2006, 16 : 351 - 358
  • [34] Evaluation of Potential for Nature-Based Recreation in the Qinghai-Tibet Plateau: A Spatial-Temporal Perspective
    Lu, Yayan
    Han, Fang
    Liu, Qun
    Wang, Zhaoguo
    Wang, Tian
    Yang, Zhaoping
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2022, 19 (09)
  • [35] RIVER DISCHARGE CHANGES IN THE QINGHAI-TIBET PLATEAU
    CAO Jianting1
    2. General Institute for Water Resources and Hydropower Planning and Design
    3. China Meteorological Administration
    4. Cold and Arid Regions Environmental and Engineering Research Institute
    ChineseScienceBulletin, 2006, (05) : 594 - 600
  • [36] Climate suitability assessment on the Qinghai-Tibet Plateau
    Liu, Jinhao
    Xin, Zhongbao
    Huang, Yanzhang
    Yu, Jia
    SCIENCE OF THE TOTAL ENVIRONMENT, 2022, 816
  • [37] Permafrost temperatures and thickness on the Qinghai-Tibet Plateau
    Wu, Qingbai
    Zhang, Tingjun
    Liu, Yongzhi
    GLOBAL AND PLANETARY CHANGE, 2010, 72 (1-2) : 32 - 38
  • [38] Species diversification and phylogeographical patterns of birds in response to the uplift of the Qinghai-Tibet Plateau and Quaternary glaciations
    Lei, Fumin
    Qu, Yanhua
    Song, Gang
    CURRENT ZOOLOGY, 2014, 60 (02) : 149 - 161
  • [39] Measuring Qinghai-Tibet plateau?s sustainability
    Fan, Yupeng
    Fang, Chuanglin
    SUSTAINABLE CITIES AND SOCIETY, 2022, 85
  • [40] Weakening of carbon sink on the Qinghai-Tibet Plateau
    Wu, Tonghua
    Ma, Wensi
    Wu, Xiaodong
    Li, Ren
    Qiao, Yongping
    Li, Xiangfei
    Yue, Guangyang
    Zhu, Xiaofan
    Ni, Jie
    GEODERMA, 2022, 412