Synthesis and Properties of Li2MnSiO4/C Cathode Materials for Li-ion Batteries

被引:1
|
作者
王燕超 [1 ,2 ]
赵世玺 [1 ]
机构
[1] Graduate School at Shenzhen, Tsinghua University
[2] School of Materials Science and Engineering, Tsinghua University
基金
中国国家自然科学基金;
关键词
Li-ion batteries; cathode; Li2MnSiO4; carbon coating;
D O I
暂无
中图分类号
TM912 [蓄电池];
学科分类号
0808 ;
摘要
Carbon was coated on the surface of LiMnSiOto improve the electrochemical performance as cathode materials, which were synthesized by the solution method followed by heat treatment at 700 ℃ and the solid-state method followed by heat treatment at 950 ℃. It is shown that the cycling performance is greatly enhanced by carbon coating, compared with the pristine LiMnSiOcathode obtained by the solution method. The initial discharge capacity of LiMnSiO/C nanocomposite is 280.9 m Ah/g at 0.05 C with the carbon content of 33.3 wt%. The reasons for the improved electrochemical performance are smaller grain size and higher electronic conductivity due to the carbon coating. The LiMnSiO/C cathode material obtained by the solid-state method exhibits poor cycling performance, the initial discharge capacity is less than 25 m Ah/g.
引用
收藏
页码:945 / 949
页数:5
相关论文
共 50 条
  • [21] Surface structure evolution of cathode materials for Li-ion batteries
    吕迎春
    刘亚利
    谷林
    Chinese Physics B, 2016, 25 (01) : 110 - 118
  • [22] Surface structure evolution of cathode materials for Li-ion batteries
    Lyu, Yingchun
    Liu, Yali
    Gu, Lin
    CHINESE PHYSICS B, 2016, 25 (01)
  • [23] Progress on studies of the cathode materials for Li-ion batteries
    Liu, J
    Wen, ZY
    Wu, MM
    Fan, ZZ
    Lin, ZX
    JOURNAL OF INORGANIC MATERIALS, 2002, 17 (01) : 1 - 9
  • [24] Comparative Issues of Cathode Materials for Li-Ion Batteries
    Julien, Christian M.
    Mauger, Alain
    Zaghib, Karim
    Groult, Henri
    INORGANICS, 2014, 2 (01) : 132 - 154
  • [25] Synthesis of LiCoO2 cathode materials for Li-ion batteries at low temperatures
    Zuo, Qiang
    Liu, Wen
    Su, Yanxia
    Cao, Yejie
    Ren, Ke
    Wang, Yiguang
    SCRIPTA MATERIALIA, 2023, 233
  • [26] Solid state synthesis, sintering and dielectric properties of Li2MnSiO4 ceramics
    Li, Yuanxun
    Peng, Rui
    Lu, Yongcheng
    Chen, Minshu
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2021, 13 : 197 - 203
  • [27] Synthesis and characterization of macroporous Li3V2(PO4)3/C composites as cathode materials for Li-ion batteries
    Xin Zhang
    Suqin Liu
    Kelong Huang
    Shuxin Zhuang
    Jun Guo
    Tao Wu
    Ping Cheng
    Journal of Solid State Electrochemistry, 2012, 16 : 937 - 944
  • [28] The electrochemical properties of nano-LiFeBO3/C as cathode materials for Li-ion batteries
    Wei Chen
    Ling Wu
    Xiaoping Zhang
    Jiequn Liu
    Shijun Liu
    Shengkui Zhong
    Journal of Solid State Electrochemistry, 2018, 22 : 1677 - 1687
  • [29] Synthesis and characterization of macroporous Li3V2(PO4)3/C composites as cathode materials for Li-ion batteries
    Zhang, Xin
    Liu, Suqin
    Huang, Kelong
    Zhuang, Shuxin
    Guo, Jun
    Wu, Tao
    Cheng, Ping
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2012, 16 (03) : 937 - 944
  • [30] The electrochemical properties of nano-LiFeBO3/C as cathode materials for Li-ion batteries
    Chen, Wei
    Wu, Ling
    Zhang, Xiaoping
    Liu, Jiequn
    Liu, Shijun
    Zhong, Shengkui
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2018, 22 (06) : 1677 - 1687