A NOTE ON THE MEAN CURVATURE FLOW IN RIEMANNIAN MANIFOLDS

被引:0
|
作者
陈旭忠 [1 ]
沈一兵 [1 ]
机构
[1] Department of Mathematics, Zhejiang University
基金
中国国家自然科学基金;
关键词
Mean curvature flow; singularity; hypersurface; weakly convexity;
D O I
暂无
中图分类号
O186.12 [黎曼几何];
学科分类号
070104 ;
摘要
Under the hypothesis of mean curvature flows of hypersurfaces, we prove that the limit of the smooth rescaling of the singularity is weakly convex. It is a generalization of the result due to G.Huisken and C. Sinestrari in. These apriori bounds are satisfied for mean convex hypersurfaces in locally symmetric Riemannian manifolds with nonnegative sectional curvature.
引用
收藏
页码:1053 / 1064
页数:12
相关论文
共 50 条
  • [41] A Note on the Evolution of the Whitney Sphere Along Mean Curvature Flow
    Viana, Celso
    JOURNAL OF GEOMETRIC ANALYSIS, 2021, 31 (04) : 4240 - 4252
  • [42] A Note on the Evolution of the Whitney Sphere Along Mean Curvature Flow
    Celso Viana
    The Journal of Geometric Analysis, 2021, 31 : 4240 - 4252
  • [43] ε0-Regularity for Mean Curvature Flow from Surface to Flat Riemannian Manifold
    Xiao Li HAN
    Jun SUN
    Acta Mathematica Sinica,English Series, 2012, 28 (07) : 1475 - 1490
  • [44] ε0-Regularity for Mean Curvature Flow from Surface to Flat Riemannian Manifold
    Han, Xiao Li
    Sun, Jun
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2012, 28 (07) : 1475 - 1490
  • [45] Hyper-Lagrangian submanifolds of Hyperkähler manifolds and mean curvature flow
    Naichung Conan Leung
    Tom Y. H. Wan
    The Journal of Geometric Analysis, 2007, 17 : 343 - 364
  • [46] UNIQUENESS OF VISCOSITY MEAN CURVATURE FLOW SOLUTION IN TWO SUB-RIEMANNIAN STRUCTURES
    Baspinar, E.
    Citti, G.
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2019, 51 (03) : 2633 - 2659
  • [47] Non-Parametric Mean Curvature Flow with Prescribed Contact Angle in Riemannian Products
    Casteras, Jean-Baptiste
    Heinonen, Esko
    Holopainen, Ilkka
    De Lira, Jorge H.
    ANALYSIS AND GEOMETRY IN METRIC SPACES, 2022, 10 (01): : 31 - 39
  • [48] ɛ0-regularity for mean curvature flow from surface to flat Riemannian manifold
    Xiao Li Han
    Jun Sun
    Acta Mathematica Sinica, English Series, 2012, 28 : 1475 - 1490
  • [49] On Hypersurfaces with Constant Mean Curvature in Finsler Manifolds
    Chen, Yali
    He, Qun
    Qian, Yantong
    RESULTS IN MATHEMATICS, 2025, 80 (03)
  • [50] A note on the oblique derivative problem for graphical mean curvature flow in Minkowski space
    Lambert, Ben
    ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG, 2012, 82 (01): : 115 - 120