Urea combustion synthesis of LiNi0.5Mn1.5O4 as a cathode material for lithium ion batteries

被引:0
|
作者
Kedi Yang [1 ]
Jing Su [1 ]
Li Zhang [1 ]
Yunfei Long [1 ]
Xiaoyan Lv [2 ]
Yanxuan Wen [1 ]
机构
[1] School of Chemistry and Chemical Engineering,Guangxi University
[2] Educational Administration Department,Guangxi University
关键词
Lithium ion battery Cathode materials LiNi0.5Mn1.5O4 Urea combustion synthesis;
D O I
暂无
中图分类号
TM912 [蓄电池];
学科分类号
摘要
LiNi0.5Mn1.5O4 was synthesized by combustion synthesis(UCS) using urea as fuel.X-ray diffraction and scanning electron microscope measurements showed that the spinel structure LiNi0.5Mn1.5O4 with the space group Fd3m was formed during urea combustion.Both structure and particle size could be adjusted by the amount of urea and the heat treatment temperature used in the UCS.For the LiNi0.5Mn1.5O4 sample prepared with a urea/Li molar ratio of 0.57 and a heat treatment temperature of 900 C,the particle-size distribution fell in a narrow range of 1-2 m.Electrochemical tests indicated that this LiNi0.5Mn1.5O4 sample delivered a discharge capacity of 133.6 mAh/g with a capacity retention rate of 99.6% after 20 cycles at 0.5 C.
引用
收藏
页码:765 / 770
页数:6
相关论文
共 50 条
  • [1] Urea combustion synthesis of LiNi0.5Mn1.5O4 as a cathode material for lithium ion batteries
    Yang, Kedi
    Su, Jing
    Zhang, Li
    Long, Yunfei
    Lv, Xiaoyan
    Wen, Yanxuan
    PARTICUOLOGY, 2012, 10 (06) : 765 - 770
  • [2] Carbon combustion synthesis of LiNi0.5Mn1.5O4 and its use as a cathode material for lithium ion batteries
    Zhang, Li
    Lv, Xiaoyan
    Wen, Yanxuan
    Wang, Fan
    Su, Haifeng
    JOURNAL OF ALLOYS AND COMPOUNDS, 2009, 480 (02) : 802 - 805
  • [3] Carbon combustion synthesis of LiNi0.5Mn1.5O4 and its use as a cathode material for lithium ion batteries
    Zhang, Li
    Lv, Xiaoyan
    Wen, Yanxuan
    Wang, Fan
    Su, Haifeng
    Journal of Alloys and Compounds, 2009, 480 (02): : 802 - 805
  • [4] Strategy for synthesizing spherical LiNi0.5Mn1.5O4 cathode material for lithium ion batteries
    Gao, Jian
    Li, Jianjun
    Song, Fu
    Lin, Jianxiong
    He, Xiangming
    Jiang, Changyin
    MATERIALS CHEMISTRY AND PHYSICS, 2015, 152 : 177 - 182
  • [5] Microwave synthesis of spherical spinel LiNi0.5Mn1.5O4 as cathode material for lithium-ion batteries
    Zhang, Minghao
    Wang, Jun
    Xia, Yonggao
    Liu, Zhaoping
    JOURNAL OF ALLOYS AND COMPOUNDS, 2012, 518 : 68 - 73
  • [6] Synthesis of spinel LiNi0.5Mn1.5O4 with secondary plate morphology as cathode material for lithium ion batteries
    Risthaus, Tim
    Wang, Jun
    Friesen, Alex
    Wilken, Andrea
    Berghus, Debbie
    Winter, Martin
    Li, Jie
    JOURNAL OF POWER SOURCES, 2015, 293 : 137 - 142
  • [7] Synthesis and electrochemical properties of LiNi0.5Mn1.5O4 as a 5 V cathode material for lithium ion batteries
    Dong, Yichen
    Wang, Zhenbo
    Qin, Hua
    Sui, Xulei
    RSC ADVANCES, 2012, 2 (31) : 11988 - 11992
  • [8] Porous LiNi0.5Mn1.5O4 sphere as 5 V cathode material for lithium ion batteries
    Wang, Jing
    Lin, Weiqing
    Wu, Bihe
    Zhao, Jinbao
    JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (39) : 16434 - 16442
  • [9] Entropy Change Characteristics of the LiNi0.5Mn1.5O4 Cathode Material for Lithium-Ion Batteries
    Mao, Jing
    Zhang, Peng
    Liu, Xin
    Liu, Yanxia
    Shao, Guosheng
    Dai, Kehua
    ACS OMEGA, 2020, 5 (08): : 4109 - 4114
  • [10] Hydrothermal Synthesis of a Nanosized LiNi0.5Mn1.5O4 Cathode Material for High Power Lithium-Ion Batteries
    Huang, Xingkang
    Zhang, Qingshun
    Gan, Jianlong
    Chang, Haitao
    Yang, Yong
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2011, 158 (02) : A139 - A145