Complete Convergence and Complete Moment Convergence for Martingale Diference Sequence

被引:0
作者
Xue Jun WANG [1 ]
Shu He HU [1 ]
机构
[1] School of Mathematical Science,Anhui University
基金
中国国家自然科学基金;
关键词
Martingale diference sequence; complete convergence; complete moment convergence; Baum–Katz-type theorem;
D O I
暂无
中图分类号
O211.6 [随机过程];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In the paper,we investigate the complete convergence and complete moment convergence for the maximal partial sum of martingale diference sequence.Especially,we get the Baum–Katz-type Theorem and Hsu–Robbins-type Theorem for martingale diference sequence.As an application,a strong law of large numbers for martingale diference sequence is obtained.
引用
收藏
页码:119 / 132
页数:14
相关论文
共 8 条
[1]  
THE COMPLETE CONVERGENCE FOR PARTIAL SUMS OF IID RANDOM VARIABLES[J]. 白志东,苏淳.Science in China,Ser.A. 1985(12)
[2]  
A complete convergence theorem for weighted sums of arrays of rowwise negatively dependent random variables[J] . Qunying Wu.Journal of Inequalities and Applications . 2012 (1)
[3]   A note on the rate of convergence in the strong law of large numbers for martingales [J].
Stoica, George .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 381 (02) :910-913
[4]  
Baum–Katz–Nagaev type results for martingales[J] . George Stoica.Journal of Mathematical Analysis and Applications . 2007 (2)
[5]   Complete convergence of martingale arrays [J].
Ghosal, S ;
Chandra, TK .
JOURNAL OF THEORETICAL PROBABILITY, 1998, 11 (03) :621-631
[6]  
Complete convergence of weighted sums of martingale differences[J] . Kai Fun Yu.Journal of Theoretical Probability . 1990 (2)
[7]  
Convergence rates in the law of large numbers[J] . Leonard E. Baum,Melvin Katz.Transactions of the American Mathematical Society . 1965 (1)
[8]  
Probability limit theory for mixed sequence .2 Wu Qunying. Science Press . 2006