SOME PATH PROPERTIES OF BROWNIAN MOTION AND SUPER-BROWNIAN MOTION ON THE SIERPINSKI GASKET

被引:0
作者
郭军义
机构
关键词
Brownian motion on Sierpinski gasket; Path Increment; Super-Brownian motion;
D O I
暂无
中图分类号
O414 [热力学与统计物理学];
学科分类号
080701 ;
摘要
We study in this paper the path properties of the Brownian motion and super-Brownian motion on the fractal structure-the Sierpinski gasket. At first some results about the limiting behaviour of its increments are obtained and a kind of law of iterated logarithm is proved. Then A Lower bound of the spreading speed of its corresponding super-Brownian motion is obtained.
引用
收藏
页码:143 / 150
页数:8
相关论文
共 16 条
[1]   BROWNIAN-MOTION ON THE SIERPINSKI GASKET [J].
BARLOW, MT ;
PERKINS, EA .
PROBABILITY THEORY AND RELATED FIELDS, 1988, 79 (04) :543-623
[2]  
Super-Brownian motion: Path properties and hitting probabilities[J] . D. A. Dawson,I. Iscoe,E. A. Perkins. &nbspProbability Theory and Related Fields . 1989 (1)
[3]   CONSTRUCTION AND REGULARITY OF MEASURE-VALUED MARKOV BRANCHING-PROCESSES [J].
FITZSIMMONS, PJ .
ISRAEL JOURNAL OF MATHEMATICS, 1988, 64 (03) :337-361
[4]  
Transition densities for Brownian motion on the Sierpinski carpet[J] . Martin T. Barlow,Richard F. Bass. &nbspProbability Theory and Related Fields . 1992 (3)
[5]  
Some results on increments of the wiener Process with applications to lagsums of i.i.d. random variables Ann. Hanson D L,Russo R P. Probab . 1983
[6]  
Brownian motion on nested fractals. Lindstrm T. Memoirs of the American Mathematical Society . 1990
[7]  
Some more results on increments of the wiener process.Aim. Hanson D L,Russo R P. Probab . 1983
[8]  
Almost-sure path properties of (2, d, β) superprocesses. Dawson D A,Vladimir V. Stochastic Processes and Their Applications . 1994
[9]  
On the supports of measure-valued critical branching Brownian motion. Iscoe I. The Annals of Probability . 1988
[10]  
How often on a Brownian path does the law of the iterated logarithm fail? Proc. Orey S,Taylor S I. London Mathematical Society . 1974