Fundamental Solution of Dirichlet Boundary Value Problem of Axisymmetric Helmholtz Equation

被引:0
作者
Zhang Kang-qun [1 ]
机构
[1] Department of Mathematics and Physics, Nanjing Institute of Technology
关键词
Axisymmetic Helmholtz equation; fundamental solution; Dirichlet boundary value problem; similarity method;
D O I
10.13447/j.1674-5647.2019.01.03
中图分类号
O175.8 [边值问题];
学科分类号
070104 ;
摘要
Fundamental solution of Dirichlet boundary value problem of axisymmetric Helmholtz equation is constructed via modi?ed Bessel function of the second kind, which uni?ed the formulas of fundamental solution of Helmholtz equation, elliptic type Euler-Poisson-Darboux equation and Laplace equation in any dimensional space.
引用
收藏
页码:21 / 26
页数:6
相关论文
共 4 条
  • [1] A new investigation into regularization techniques for the method of fundamental solutions[J] . Ji Lin,Wen Chen,Fuzhang Wang.Mathematics and Computers in Simulation . 2010 (6)
  • [2] The method of particular solutions for solving axisymmetric polyharmonic and poly-Helmholtz equations
    Tsai, Chia-Cheng
    Chen, C. S.
    Hsu, Tai-Wen
    [J]. ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2009, 33 (12) : 1396 - 1402
  • [3] Fundamental solutions of generalized bi-axially symmetric Helmholtz equation[J] . Anvar Hasanov.Complex Variables and Elliptic Equations . 2007 (8)
  • [4] Scattering by Rough Surfaces: the Dirichlet Problem for the Helmholtz Equation in a Non‐locally Perturbed Half‐plane[J] . Simon N.Chandler‐Wilde,Christopher R.Ross.Math. Meth. Appl. Sci. . 1998 (12)