Best Constants for Moser-Trudinger Inequalities,Fundamental Solutions and One-Parameter Representation Formulas on Groups of Heisenberg Type

被引:0
作者
COHN William S. [1 ]
机构
[1] Department of Mathematics.Wayne State University.Detroit.MI 48202 USA
关键词
Heisenberg group; Groups of Heisenberg type; Sobolev inequalities; Moser-Trudinger inequalities; Best constants; One-Parameter representation formulas; Fundamental solutions;
D O I
暂无
中图分类号
O178 [不等式及其他]; O152 [群论];
学科分类号
0701 ; 070101 ; 070104 ;
摘要
We derive the explicit fundamental solutions for a class of degenerate(or singular)one-parameter subelliptic differential operators on groups of Heisenberg(H)type.This extends the resultof Kaplan for the sub-Laplacian on H-type groups,which in turn generalizes Folland’s result on theHeisenberg group.As an application,we obtain a one-parameter representation formula for Sobolevfunctions of compact support on H-type groups.By choosing the parameter equal to the homogeneousdimension Q and using the Mose-Trudinger inequality for the convolutional type operator on stratifiedgroups obtained in[18].we get the following theorem which gives the best constant for the Moser-Trudiuger inequality for Sobolev functions on H-type groups.Let G be any group of Heisenberg type whose Lie algebra is generated by m left invariant vectorfields and with a q-dimensional center.Let Q=m+2q.Q’=Q-1/Q andThen.with Aas the sharp constant,where ▽G denotes the subelliptic gradient on G.This continues the research originated in our earlier study of the best constants in Moser-Trudingerinequalities and fundamental solutions for one-parameter subelliptic operators on the Heisenberg group[18].
引用
收藏
页码:375 / 390
页数:16
相关论文
共 17 条