ON THE EXISTENCE AND UNIQUENESS THEOREMS OF LIMIT CYCLES OF NONLINEAR AUTONOMOUS SYSTEMS

被引:0
作者
居乃旦
机构
[1] InstituteofMathematicsAcademiaSinica
关键词
cycle; ON THE EXISTENCE AND UNIQUENESS THEOREMS OF LIMIT CYCLES OF NONLINEAR AUTONOMOUS SYSTEMS; real;
D O I
暂无
中图分类号
学科分类号
摘要
<正> 1. Let α, l, m,n, and b be real constants. Regarding the nonlinear autonomous system dx/dt =ax- y+ lx2+mxy+ny , dy/dt=x+bxy,(1) we have Theorem 1. If α= 0 and if l-b=0 or m2-An(n+b)≥0, then system (1) possesses no limit cycle in the whole plane. Theorem 2. When α≠0, system (1) may have one unique limit cycle surrounding one of the two critical points O(0, 0) andN ( 0, 1/n) if l-b=0 or l=0. Theorem 3. I fn+b =0 or n= 0
引用
收藏
页码:193 / 194
页数:2
相关论文
empty
未找到相关数据