Deep residual learning for denoising Monte Carlo renderings

被引:2
作者
KinMing Wong [1 ]
TienTsin Wong [2 ]
机构
[1] Artixels
[2] Department of Computer Science and Engineering, the Chinese University of Hong Kong
关键词
Monte Carlo rendering; denoising; deep learning; deep residual learning; filter-free denoising;
D O I
暂无
中图分类号
TP391.41 []; TP18 [人工智能理论];
学科分类号
080203 ; 081104 ; 0812 ; 0835 ; 1405 ;
摘要
Learning-based techniques have recently been shown to be effective for denoising Monte Carlo rendering methods. However, there remains a quality gap to state-of-the-art handcrafted denoisers. In this paper, we propose a deep residual learning based method that outperforms both state-of-the-art handcrafted denoisers and learning-based denoisers.Unlike the indirect nature of existing learning-based methods(which e.g., estimate the parameters and kernel weights of an explicit feature based filter), we directly map the noisy input pixels to the smoothed output. Using this direct mapping formulation, we demonstrate that even a simple-and-standard ResNet and three common auxiliary features(depth, normal,and albedo) are sufficient to achieve high-quality denoising. This minimal requirement on auxiliary data simplifies both training and integration of our method into most production rendering pipelines. We have evaluated our method on unseen images created by a different renderer. Consistently superior quality denoising is obtained in all cases.
引用
收藏
页码:239 / 255
页数:17
相关论文
共 22 条
[1]   Interactive Reconstruction of Monte Carlo Image Sequences using a Recurrent Denoising Autoencoder [J].
Chaitanya, Chakravarty R. Alla ;
Kaplanyan, Anton S. ;
Schied, Christoph ;
Salvi, Marco ;
Lefohn, Aaron ;
Nowrouzezahrai, Derek ;
Aila, Timo .
ACM TRANSACTIONS ON GRAPHICS, 2017, 36 (04)
[2]   Kernel-Predicting Convolutional Networks for Denoising Monte Carlo Renderings [J].
Bako, Steve ;
Vogels, Thijs ;
Mcwilliams, Brian ;
Meyer, Mark ;
Novak, Jan ;
Harvill, Alex ;
Sen, Pradeep ;
Derose, Tony ;
Rousselle, Fabrice .
ACM TRANSACTIONS ON GRAPHICS, 2017, 36 (04)
[3]   Globally and Locally Consistent Image Completion [J].
Iizuka, Satoshi ;
Simo-Serra, Edgar ;
Ishikawa, Hiroshi .
ACM TRANSACTIONS ON GRAPHICS, 2017, 36 (04)
[4]   Nonlinearly Weighted First-order Regression for Denoising Monte Carlo Renderings [J].
Bitterli, Benedikt ;
Rousselle, Fabrice ;
Moon, Bochang ;
Iglesias-Guitian, Jose A. ;
Adler, David ;
Mitchell, Kenny ;
Jarosz, Wojciech ;
Novak, Jan .
COMPUTER GRAPHICS FORUM, 2016, 35 (04) :107-117
[5]   A Machine Learning Approach for Filtering Monte Carlo Noise [J].
Kalantari, Nima Khademi ;
Bako, Steve ;
Sen, Pradeep .
ACM TRANSACTIONS ON GRAPHICS, 2015, 34 (04)
[6]   Adaptive Rendering with Linear Predictions [J].
Moon, Bochang ;
Iglesias-Guitian, Jose A. ;
Yoon, Sung-Eui ;
Mitchell, Kenny .
ACM TRANSACTIONS ON GRAPHICS, 2015, 34 (04)
[7]   Path-space Motion Estimation and Decomposition for Robust Animation Filtering [J].
Zimmer, Henning ;
Rousselle, Fabrice ;
Jakob, Wenzel ;
Wang, Oliver ;
Adler, David ;
Jarosz, Wojciech ;
Sorkine-Hornung, Olga ;
Sorkine-Hornung, Alexander .
COMPUTER GRAPHICS FORUM, 2015, 34 (04) :131-142
[8]   Recent Advances in Adaptive Sampling and Reconstruction for Monte Carlo Rendering [J].
Zwicker, M. ;
Jarosz, W. ;
Lehtinen, J. ;
Moon, B. ;
Ramamoorthi, R. ;
Rousselle, F. ;
Sen, P. ;
Soler, C. ;
Yoon, S. -E. .
COMPUTER GRAPHICS FORUM, 2015, 34 (02) :667-681
[9]  
Deep learning in neural networks: An overview.[J].Jürgen Schmidhuber.Neural Networks.2015,
[10]   Adaptive Rendering Based on Weighted Local Regression [J].
Moon, Bochang ;
Carr, Nathan ;
Yoon, Sung-Eui .
ACM TRANSACTIONS ON GRAPHICS, 2014, 33 (05)