Computer Forensic Using Lazy Local Bagging Predictors

被引:0
作者
邱卫东 [1 ]
鲍诚毅 [1 ]
朱兴全 [2 ]
机构
[1] School of Information Security Engineering,Shanghai Jiaotong University,Shanghai 200240,China
[2] Department of Computer Science & Engineering,Florida Atlantic University,Boca Raton,FL 33431,USA
基金
中国国家自然科学基金;
关键词
computer forensic; data mining; classification; lazy learning; bagging; ensemble learning;
D O I
暂无
中图分类号
TP399-C2 [];
学科分类号
081203 ; 0835 ;
摘要
In this paper,we study the problem of employ ensemble learning for computer forensic.We propose a Lazy Local Learning based bagging(L~3B) approach,where base earners are trained from a small instance subset surrounding each test instance.More specifically,given a test instance x,L~3B first discovers x’s k nearest neighbours,and then applies progressive sampling to the selected neighbours to train a set of base classifiers,by using a given very weak(VW) learner.At the last stage,x is labeled as the most frequently voted class of all base classifiers.Finally,we apply the proposed L~3B to computer forensic.
引用
收藏
页码:94 / 97
页数:4
相关论文
共 50 条
  • [31] Double-Bagging Ensemble Using WAVE
    Kim, Ahhyoun
    Kim, Minji
    Kim, Hyunjoong
    [J]. COMMUNICATIONS FOR STATISTICAL APPLICATIONS AND METHODS, 2014, 21 (05) : 411 - 422
  • [32] Lazy classifiers using P-trees
    Perrizo, W
    Ding, Q
    Denton, A
    [J]. COMPUTER APPLICATIONS IN INDUSTRY AND ENGINEERING, 2002, : 176 - 179
  • [33] Bagging-based ensemble classifiers using multi-objective genetic programming
    Zheng, Yang
    Zhang, Fan
    Gao, Xiaoying
    Ma, Jianbin
    [J]. MEMETIC COMPUTING, 2025, 17 (02)
  • [34] MCs Detection Approach Using Bagging and Boosting Based Twin Support Vector Machine
    Zhang, Xinsheng
    Gao, Xinbo
    Wang, Minghu
    [J]. 2009 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS (SMC 2009), VOLS 1-9, 2009, : 5000 - +
  • [35] Performance of global-local hybrid ensemble versus boosting and bagging ensembles
    Baumgartner, Dustin
    Serpen, Gursel
    [J]. INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2013, 4 (04) : 301 - 317
  • [36] Extensions to Online Feature Selection Using Bagging and Boosting
    Ditzler, Gregory
    LaBarck, Joseph
    Ritchie, James
    Rosen, Gail
    Polikar, Robi
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2018, 29 (09) : 4504 - 4509
  • [37] An intrusion detection system using ranked feature bagging
    Azhagiri M.
    Rajesh A.
    Karthik S.
    Raja K.
    [J]. International Journal of Information Technology, 2024, 16 (2) : 1213 - 1219
  • [38] Using the bagging approach for biclustering of gene expression data
    Hanczar, B.
    Nadif, M.
    [J]. NEUROCOMPUTING, 2011, 74 (10) : 1595 - 1605
  • [39] NER in Tweets Using Bagging and a Small Crowdsourced Dataset
    Fromreide, Hege
    Sogaard, Anders
    [J]. ADVANCES IN NATURAL LANGUAGE PROCESSING, 2014, 8686 : 45 - 51
  • [40] A Classifier Selection Strategy for Lazy Bayesian Rules based on Local Accuracy Estimation
    Xie, Zhipeng
    [J]. PROCEEDINGS OF THE FIRST INTERNATIONAL WORKSHOP ON EDUCATION TECHNOLOGY AND COMPUTER SCIENCE, VOL III, 2009, : 156 - 159