Computer Forensic Using Lazy Local Bagging Predictors

被引:0
作者
邱卫东 [1 ]
鲍诚毅 [1 ]
朱兴全 [2 ]
机构
[1] School of Information Security Engineering,Shanghai Jiaotong University,Shanghai ,China
[2] Department of Computer Science & Engineering,Florida Atlantic University,Boca Raton,FL ,USA
关键词
computer forensic; data mining; classification; lazy learning; bagging; ensemble learning;
D O I
暂无
中图分类号
TP399-C2 [];
学科分类号
081203 ; 0835 ;
摘要
<正>In this paper,we study the problem of employ ensemble learning for computer forensic.We propose a Lazy Local Learning based bagging(L3B) approach,where base earners are trained from a small instance subset surrounding each test instance.More specifically,given a test instance x,L3B first discovers x's k nearest neighbours,and then applies progressive sampling to the selected neighbours to train a set of base classifiers,by using a given very weak(VW) learner.At the last stage,x is labeled as the most frequently voted class of all base classifiers.Finally,we apply the proposed L3B to computer forensic.
引用
收藏
页码:94 / 97
页数:4
相关论文
共 50 条
[21]   Evolving Bagging Ensembles Using a Spatially-Structured Niching Method [J].
Dick, Grant ;
Owen, Caitlin A. ;
Whigham, Peter A. .
GECCO'18: PROCEEDINGS OF THE 2018 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2018, :418-425
[22]   Extreme Learning Machine Ensemble Using Bagging for Facial Expression Recognition [J].
Ghimire, Deepak ;
Lee, Joonwhoan .
JOURNAL OF INFORMATION PROCESSING SYSTEMS, 2014, 10 (03) :443-458
[23]   ENSEMBLE APPROACH BASED ON BAGGING AND BOOSTING FOR IDENTIFICATION THE COMPUTER SYSTEM STATE [J].
Gavrylenko, Svitlana ;
Chelak, Viktor ;
Hornostal, Oleksii .
2021 XXXI INTERNATIONAL SCIENTIFIC SYMPOSIUM METROLOGY AND METROLOGY ASSURANCE (MMA 2021), 2021, :70-76
[24]   Combination of several predictors for forensic age estimation [J].
Hubig, Michael ;
Wittschieber, Daniel ;
Hunold, Thomas ;
Muggenthaler, Holger ;
Schenkl, Sebastian ;
Mall, Gita .
RECHTSMEDIZIN, 2024, 34 (02) :115-121
[25]   A Decision-Driven Computer Forensic Classification Using ID3 Algorithm [J].
Satpathy, Suneeta ;
Pradhan, Sateesh K. ;
Ray, B. N. B. .
INTELLIGENT COMPUTING, COMMUNICATION AND DEVICES, 2015, 309 :367-376
[26]   Attribute bagging: improving accuracy of classifier ensembles by using random feature subsets [J].
Bryll, R ;
Gutierrez-Osuna, R ;
Quek, F .
PATTERN RECOGNITION, 2003, 36 (06) :1291-1302
[27]   Performance of global–local hybrid ensemble versus boosting and bagging ensembles [J].
Dustin Baumgartner ;
Gursel Serpen .
International Journal of Machine Learning and Cybernetics, 2013, 4 :301-317
[28]   A Classifier Using Online Bagging Ensemble Method for Big Data Stream Learning [J].
Yanxia Lv ;
Sancheng Peng ;
Ying Yuan ;
Cong Wang ;
Pengfei Yin ;
Jiemin Liu ;
Cuirong Wang .
Tsinghua Science and Technology, 2019, (04) :379-388
[29]   A Classifier Using Online Bagging Ensemble Method for Big Data Stream Learning [J].
Lv, Yanxia ;
Peng, Sancheng ;
Yuan, Ying ;
Wang, Cong ;
Yin, Pengfei ;
Liu, Jiemin ;
Wang, Cuirong .
TSINGHUA SCIENCE AND TECHNOLOGY, 2019, 24 (04) :379-388
[30]   Link Prediction Using Matrix Factorization with Bagging [J].
Wu, Zhifeng ;
Chen, Yixin .
2016 IEEE/ACIS 15TH INTERNATIONAL CONFERENCE ON COMPUTER AND INFORMATION SCIENCE (ICIS), 2016, :1271-1276