POWER VARIATION OF SUBFRACTIONAL BROWNIAN MOTION AND APPLICATION

被引:0
作者
申广君 [1 ]
闫理坦 [2 ]
刘俊峰 [3 ]
机构
[1] Department of Mathematics, Anhui Normal University
[2] Department of Mathematics, Donghua University
[3] School of Mathematics and Statistics, Nanjing Audit University
基金
中国国家自然科学基金;
关键词
subfractional Brownian motion; power variation; strongly consistent;
D O I
暂无
中图分类号
O211.6 [随机过程];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper,we consider the power variation of subfractional Brownian motion.As an application,we introduce a class of estimators for the index of a subfractional Brownian motion and show that they are strongly consistent.
引用
收藏
页码:901 / 912
页数:12
相关论文
共 50 条
[41]   On the Wiener integral with respect to a sub-fractional Brownian motion on an interval [J].
Tudor, Constantin .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 351 (01) :456-468
[42]   On limit theorems of some extensions of fractional Brownian motion and their additive functionals [J].
Ouahra, M. Ait ;
Moussaten, S. ;
Sghir, A. .
STOCHASTICS AND DYNAMICS, 2017, 17 (03)
[43]   Optimal estimation of a signal perturbed by a sub-fractional Brownian motion [J].
Rao, B. L. S. Prakasa .
STOCHASTIC ANALYSIS AND APPLICATIONS, 2017, 35 (03) :533-541
[44]   On some maximal and integral inequalities for sub-fractional Brownian motion [J].
Rao, B. L. S. Prakasa .
STOCHASTIC ANALYSIS AND APPLICATIONS, 2017, 35 (02) :279-287
[45]   Remarks on an integral functional driven by sub-fractional Brownian motion [J].
Guangjun Shen ;
Litan Yan .
Journal of the Korean Statistical Society, 2011, 40 :337-346
[46]   Stochastic delay evolution equations driven by sub-fractional Brownian motion [J].
Li, Zhi ;
Zhou, Guoli ;
Luo, Jiaowan .
ADVANCES IN DIFFERENCE EQUATIONS, 2015,
[47]   The generalized Bouleau-Yor identity for a sub-fractional Brownian motion [J].
Yan LiTan ;
He Kun ;
Chen Chao .
SCIENCE CHINA-MATHEMATICS, 2013, 56 (10) :2089-2116
[48]   Particle picture interpretation of some Gaussian processes related to fractional Brownian motion [J].
Bojdecki, Tomasz ;
Talarczyk, Anna .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2012, 122 (05) :2134-2154
[49]   Parameter estimations for the sub-fractional Brownian motion with drift at discrete observation [J].
Kuang, Nenghui ;
Liu, Bingquan .
BRAZILIAN JOURNAL OF PROBABILITY AND STATISTICS, 2015, 29 (04) :778-789
[50]   The generalized Bouleau-Yor identity for a sub-fractional Brownian motion [J].
YAN LiTan ;
HE Kun ;
CHEN Chao .
Science China(Mathematics), 2013, 56 (10) :2089-2116