Binding Numbers for Fractional ID-k-factor-critical Graphs

被引:0
作者
Si Zhong ZHOU [1 ]
机构
[1] School of Mathematics and Physics,Jiangsu University of Science and Technology
基金
中国国家自然科学基金;
关键词
Graph; binding number; independent set; fractionalk-factor; fractional ID-k-factor-criti-cal;
D O I
暂无
中图分类号
O157.5 [图论];
学科分类号
070104 ;
摘要
LetG be a graph,and k≥2 be a positive integer.A graph G is fractional independentset-deletable k-factor-critical(in short,fractional ID-k-factor-critical),if G I has a fractional k-factor for every independent set I of G.The binding number bind(G)of a graph G is defined as bind(G)=min|NG(X)||X|:=X V(G),NG(X)=V(G).In this paper,it is proved that a graph G is fractional ID-k-factor-critical if n≥6k 9 and bind(G)>(3k 1)(n 1)kn 2k+2.
引用
收藏
页码:181 / 186
页数:6
相关论文
共 10 条
[1]   FRACTIONAL (g, f)-FACTORS OF GRAPHS [J].
刘桂真 ;
张兰菊 .
Acta Mathematica Scientia, 2001, (04) :541-545
[2]   Some new sufficient conditions for graphs to have fractional k-factors [J].
Zhou, Sizhong .
INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2011, 88 (03) :484-490
[3]   Binding Numbers and Connected Factors [J].
Nam, Yunsun .
GRAPHS AND COMBINATORICS, 2010, 26 (06) :805-813
[4]   The existence of k-factors in squares of graphs [J].
Fourtounelli, Olga ;
Katerinis, P. .
DISCRETE MATHEMATICS, 2010, 310 (23) :3351-3358
[5]  
A minimum degree condition of fractional ( k , m ) -deleted graphs[J] . Sizhong Zhou.Comptes rendus - Mathématique . 2009 (21)
[6]  
On fractional ( f , n ) -critical graphs[J] . Sizhong Zhou,Qiqing Shen.Information Processing Letters . 2009 (14)
[7]  
Independence number, connectivity and ( a , b , k ) -critical graphs[J] . Sizhong Zhou.Discrete Mathematics . 2008 (12)
[8]  
Toughness and the existence of fractional k -factors of graphs[J] . Guizhen Liu,Lanju Zhang.Discrete Mathematics . 2007 (9)
[9]  
INDEPENDENT-SET-DELETABLE FACTOR-CRITICAL POWER GRAPHS * * Project supported by NSFC(10371112), NSFHN (0411011200) and SRF for ROCS, SEM[J] . Jinjiang Yuan.Acta Mathematica Scientia . 2006 (4)
[10]  
Matching Theory .2 Lovasz L,Plummer M D. . 1985