Existence of Limit Cycles for a Cubic Kolmogorov System with a Hyperbolic Solution

被引:2
|
作者
沈伯骞
刘德明
机构
关键词
cubic kolmogorov system; central quadratic curve; limit cycle;
D O I
10.13447/j.1674-5647.2000.01.012
中图分类号
O231 [控制论(控制论的数学理论)];
学科分类号
070105 ; 0711 ; 071101 ; 0811 ; 081101 ;
摘要
This paper is concerned with a cubic Kolmogorov system with a solution of central quadratic curve which neither contacts with the coordinate axes, nor passes through the origin. The conclusion is that such a system may possess limit cycles.
引用
收藏
页码:91 / 95
页数:5
相关论文
共 50 条
  • [1] Limit Cycles of A Cubic Kolmogorov System
    Li, Feng
    PROCEEDINGS OF THE 7TH CONFERENCE ON BIOLOGICAL DYNAMIC SYSTEM AND STABILITY OF DIFFERENTIAL EQUATION, VOLS I AND II, 2010, : 619 - 622
  • [2] EXISTENCE OF LIMIT CYCLES FOR A CUBIC KOLMOGOROV SYSTEM WITH A PARABOLIC SOLUTION WHICH DOES NOT CONTACT AND INTERSECT THE COORDINATE AXES
    沈聪
    沈伯骞
    Annals of Differential Equations, 2004, (02) : 168 - 172
  • [3] EXISTENCE CONDITIONS OF THIRTEEN LIMIT CYCLES IN A CUBIC SYSTEM
    Yang, Junmin
    Han, Maoan
    Li, Jibin
    Yu, Pei
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2010, 20 (08): : 2569 - 2577
  • [4] EXISTENCE AND UNIQUENESS OF LIMIT CYCLES FOR A CLASS OF CUBIC DIFFERENTIAL SYSTEM
    Weide Zhang
    Annals of Applied Mathematics, 2013, (04) : 490 - 492
  • [5] The limit cycles of a general Kolmogorov system
    Yuan, Yueding
    Chen, Haibo
    Du, Chaoxiong
    Yuan, Yuejin
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 392 (02) : 225 - 237
  • [6] ON THE BOUNDEDNESS OF SOLUTIONS,EXISTENCE AND UNIQUENESS OF LIMIT CYCLES FOR A CLASS OF CUBIC DIFFERENTIAL SYSTEM
    WANG Chengwen Shandong Institute of Mining and Technology
    SystemsScienceandMathematicalSciences, 1993, (03) : 217 - 226
  • [7] On a cubic system with eight limit cycles
    Ning, Shucheng
    Xia, Bican
    Zheng, Zhiming
    BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2007, 14 (04) : 595 - 605
  • [8] Bifurcations of limit cycles in a cubic system with cubic perturbations
    Zang, Hong
    Zhang, Tonghua
    Han, Maoan
    APPLIED MATHEMATICS AND COMPUTATION, 2006, 176 (01) : 341 - 358
  • [9] GLOBAL BIFURCATIONS OF LIMIT CYCLES FOR A CUBIC SYSTEM
    孟争
    韩茂安
    顾圣士
    Annals of Applied Mathematics, 2000, (03) : 263 - 269
  • [10] On the number and distribution of limit cycles in a cubic system
    Maoan, H
    Zhang, TH
    Hong, Z
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2004, 14 (12): : 4285 - 4292