基于Riemann-Liouville导数的分数阶Pfaff-Birkhoff原理和分数阶Birkhoff方程

被引:5
作者
周燕 [1 ]
张毅 [2 ]
机构
[1] 苏州科技学院数理学院
[2] 苏州科技学院土木工程学院
关键词
Riemann-Liouville分数阶导数; 分数阶Pfaff-Birkhoff原理; 分数阶Birkhoff方程; 横截性条件;
D O I
10.13774/j.cnki.kjtb.2013.03.045
中图分类号
O172.1 [微分学];
学科分类号
摘要
研究分数阶Pfaff-Birkhoff变分问题。列写出Riemann-Liouville分数阶导数的定义及其有关性质。建立了基于Riemann-Liuville分数阶导数的分数阶Pfaff-Birkhoff原理,并由分数阶Pfaff-Birkhoff原理推导出了分数阶Birkhoff方程及其横截性条件。研究表明:整数阶Pfaff-Birkhoff原理和Birkhoff方程是本文结果的特例。文末举例说明结果的应用。
引用
收藏
页码:4 / 10
页数:7
相关论文
共 25 条
[1]  
Mechanics with fractional derivatioves. Riewe F. Physical Review . 1997
[2]  
BIRKHOFF系统动力学[M]. 理工大学出版社 , 梅凤翔等著, 1996
[3]  
Variational problems with fractional derivatives:Invariance conditions andNoether’’s theorem. Atanackovi T M,Konjik S,Pilipovi S,Simi S. Nonlinear Analysis . 2009
[4]  
Necessary optimality conditions for fractional action-like variational problems with intrinsicand observer times. Frederico G S F,Torres D F M. Weas Transactions on Mathmatics . 2008
[5]  
Constants of motion for fractional action-like variational problems. Frederico G S F,Torres D F M. International Journalof Applied Mathematics . 2006
[6]  
Generalized Variational Problems and Euler-Lagrange Equations. O. P. Agrawal. Computers and Mathematics With Applications . 2010
[7]  
Generalized Euler-Lagrange equations and transversality conditions for FVPs in terms of the Caputo derivative. Agrawal Om P. Journal of Vibration and Control . 2007
[8]  
Fractional variational calculus in terms of Riesz fractional derivatives. O.P. Agrawal. Journal of Physics A:Mathematical and Theoretical . 2007
[9]  
Nonconservaive Lagrangian and Hamiltonian mechanics. Riewe F. Physical Review . 1996
[10]  
Oldham,KB,Spanier,J. The fractional calculus . 1974