Doubly Periodic Propagating Wave for (2+1)-Dimensional Breaking Soliton Equation

被引:0
作者
HUANG WenHua LIU YuLu ZHANG JieFang College of ScienceHuzhou UniversityHuzhou China Shanghai Institute of Applied Mathematics and MechanicsShanghai UniversityShanghai China Institute of Nonlinear PhysicsZhejiang Normal UniversityJinhua China [1 ,2 ,2 ,3 ,1 ,313000 ,2 ,200072 ,3 ,321000 ]
机构
关键词
breaking soliton equation; variable separation method; Jabobi elliptic function; periodic wave;
D O I
暂无
中图分类号
O175 [微分方程、积分方程];
学科分类号
070104 ;
摘要
<正> Using the variable separation approach,we obtain a general exact solution with arbitrary variable separationfunctions for the (2+1)-dimensional breaking soliton system.By introducing Jacobi elliptic functions in the seed solution,two families of doubly periodic propagating wave patterns are derived.We investigate these periodic wave solutions withdifferent modulus m selections,many important and interesting properties are revealed.The interaction of Jabcobielliptic function waves are graphically considered and found to be nonelastic.
引用
收藏
页码:268 / 274
页数:7
相关论文
共 2 条
[1]   SIN [P]. 
WILLIAMS LAURENCE LYMAN ;
COSCIA ANTHONY THOMAS .
澳大利亚专利 :AU4238672A ,1973-11-22
[2]  
O.I.Bogoyavlensky. Izv.Akad.Nauk.SSSR, Ser.Mat . 1998