Wavelet-fractional Fourier transforms

被引:0
|
作者
袁琳 [1 ]
机构
[1] College of Mathematics Physics and Information, Zhejiang Normal University
关键词
multiresolution analysis; fractional Fourier transform; wavelets-fractional Fourier trans- form;
D O I
暂无
中图分类号
O174.22 [傅里叶积分(傅里叶变换)];
学科分类号
摘要
This paper extends the definition of fractional Fourier transform (FRFT) proposed by Namias V by using other orthonormal bases for L 2 (R) instead of Hermite-Gaussian functions. The new orthonormal basis is gained indirectly from multiresolution analysis and orthonormal wavelets. The so defined FRFT is called wavelets-fractional Fourier transform.
引用
收藏
页码:170 / 179
页数:10
相关论文
共 50 条
  • [31] Composition of the Continuous Fractional Wavelet Transforms
    Akhilesh Prasad
    Praveen Kumar
    National Academy Science Letters, 2016, 39 : 115 - 120
  • [32] Fractional Fourier transforms of hypercomplex signals
    Hendrik De Bie
    Nele De Schepper
    Signal, Image and Video Processing, 2012, 6 : 381 - 388
  • [33] Self-fractional-Fourier transforms
    Castro, A
    Ojeda-Castañeda, J
    3RD IBEROAMERICAN OPTICS MEETING AND 6TH LATIN AMERICAN MEETING ON OPTICS, LASERS, AND THEIR APPLICATIONS, 1999, 3572 : 441 - 445
  • [34] Fractional Fourier transforms in two dimensions
    Simon, R
    Wolf, KB
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2000, 17 (12): : 2368 - 2381
  • [35] ON NAMIASS FRACTIONAL FOURIER-TRANSFORMS
    MCBRIDE, AC
    KERR, FH
    IMA JOURNAL OF APPLIED MATHEMATICS, 1987, 39 (02) : 159 - 175
  • [36] Fractional Fourier Transforms and Geometrical Optics
    Moreno, Ignacio
    Ferreira, Carlos
    ADVANCES IN IMAGING AND ELECTRON PHYSICS, VOL 161, 2010, 161 : 89 - 146
  • [37] Composition of the Continuous Fractional Wavelet Transforms
    Prasad, Akhilesh
    Kumar, Praveen
    NATIONAL ACADEMY SCIENCE LETTERS-INDIA, 2016, 39 (02): : 115 - 120
  • [38] Discrete fractional Hartley and Fourier transforms
    Pei, SC
    Tseng, CC
    Yeh, MH
    Shyu, JJ
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-ANALOG AND DIGITAL SIGNAL PROCESSING, 1998, 45 (06): : 665 - 675
  • [39] Fractional Fourier transforms of hypercomplex signals
    De Bie, Hendrik
    De Schepper, Nele
    SIGNAL IMAGE AND VIDEO PROCESSING, 2012, 6 (03) : 381 - 388
  • [40] Fractional Fourier transforms in two dimensions
    Simon, R.
    Wolf, Kurt Bernardo
    2000, OSA - The Optical Society (17):